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Abstract

In recent years there has been growing availability of individual-level spatio-temporal dis-

ease data, particularly due to the use of modern communicating devices with GPS tracking

functionality. These detailed data have been proven useful for inferring disease transmis-

sion to a more refined level than previously. However, there remains a lack of statistically

sound frameworks to model the underlying transmission dynamic in a mechanistic manner.

Such a development is particularly crucial for enabling a general epidemic predictive frame-

work at the individual level. In this paper we propose a new statistical framework for mecha-

nistically modelling individual-to-individual disease transmission in a landscape with

heterogeneous population density. Our methodology is first tested using simulated datasets,

validating our inferential machinery. The methodology is subsequently applied to data that

describes a regional Ebola outbreak in Western Africa (2014-2015). Our results show that

the methods are able to obtain estimates of key epidemiological parameters that are broadly

consistent with the literature, while revealing a significantly shorter distance of transmission.

More importantly, in contrast to existing approaches, we are able to perform a more general

model prediction that takes into account the susceptible population. Finally, our results

show that, given reasonable scenarios, the framework can be an effective surrogate for sus-

ceptible-explicit individual models which are often computationally challenging.
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Author summary

Availability of individual-level, spatio-temporal disease data (e.g. GPS locations of infected

individuals) has been increasing in recent years, primarily due to the increased use of

modern communication devices such as mobile phones. Such data create invaluable

opportunities for researchers to study disease transmission on a more refined individual-

to-individual level, facilitating the designs of potentially more effective control measures.

However, the growing availability of such precise data has not been accompanied by

development of statistically sound mechanistic frameworks. Developing such frameworks

is an essential step for systematically extracting maximal information from data, in partic-

ular, evaluating the efficacy of individually-targeted control strategies and enabling for-

ward epidemic prediction at the individual level. In this paper we develop a novel

statistical framework that overcomes a few key limitations of existing approaches,

enabling a machinery that can be used to infer the history of partially observed outbreaks

and, more importantly, to produce a more comprehensive epidemic prediction. Our

framework may also be a good surrogate for more computationally challenging individ-

ual-based models.

Introduction

Epidemiological data collected by traditional public health surveillance often contain relatively

coarse spatial and temporal information on infected individuals. In recent years, the amount

and resolution of the spatio-temporal data have increased vastly due to the advent of ‘digital

epidemiology’ along with the increased use of modern communication devices [1], particularly

through the use of mobile phones which drastically improves the tracking of human contacts

[2–4]. Such data provide unprecedented opportunities for dissecting disease spread at a more

localized, individual-to-individual level. The recent West Africa Ebola outbreak (Fig 1) well

demonstrated the increasing availability of such data, and, in particular, the GPS location data

collected during the outbreak have been shown to be useful in identifying superspreaders and

quantifying the impact of superspreading during the outbreak [4].

However, the growing availability of these more precise spatio-temporal data has not been

accompanied by development of statistically sound mechanistic frameworks for modelling the

underlying individual-to-individual transmission process. Developing such methods is an

essential step for systematically extracting maximal information from such data, in particular,

evaluating the efficacy of individually-targeted control strategies and enabling forward epi-

demic prediction at the individual level.

Conventional compartmental models (e.g. SEIR) require an explicit account of the com-

plete contact process which specifies both the successful contacts (i.e. the infected in class E),

and, more challengingly [6], the unsuccessful contacts (i.e. who has remained susceptible in

class S). Representing unsuccessful contacts at the individual level is computationally challeng-

ing due to the need to build an explicit contact network among essentially all individuals in the

population. One may consider adapting mechanistic compartmental disease models to accom-

modate these data. Important examples of these approaches include: 1) a patch-level approach

that aggregates data points within pre-defined grids/patches [7–9], and 2) a transmission-net-

work-based approach which is essentially a partial-likelihood approach that considers only the

infected individuals and ignores the unsuccessful contacts [4, 10–12]. Fig 2 presents a sche-

matic illustration of these two approaches. Although the patch-level approach conforms to the

desirable SEIR-type mechanistic framework, in which both the successful infectious contacts
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(E) and unsuccessful contacts (S) are represented, at least on the patch level, the aggregation of

data points can be arbitrary and it inevitably degrades the data resolution necessary for infer-

ring, for example, the individual-to-individual transmission. The transmission-network-based

(partial-likelihood) approach, on the other hand, preserves the ‘point nature’ of the data but

fails to conform to the mechanistic framework by completely ignoring the general (susceptible)

population and its relation to the infected class. Although the latter has been shown to be use-

ful for sampling the relations among infections (e.g. the transmission tree), it is inadequate for

the purposes of complete forward epidemic prediction which needs to take into account the

general (susceptible) population [4].

Spatio-temporal point processes (see an introduction in [5]) may also appear to be natural

candidates for individual spatial data. However, it is not straightforward to integrate them

with a mechanistic compartmental disease model such as the SEIR (Susceptible-Exposed-

Infectious-Recovered) model. In particular, it is difficult to formulate conditional intensities

for a spatio-temporal point process directly for the observations that respects the mechanistic

modelling assumptions. If one observes the transitions made by individuals from the E to I

classes and from the I to R classes then it may be natural to consider a marked spatio-temporal

point process where points represent the transitions from E to I and marks quantify the subse-

quent sojourn time in the I class. Calculation of intensities conditional on the observation his-

tory, necessary for the construction of the likelihood, is difficult due to the transitions from E

to I being unobserved. Other approaches which do not utilize the full likelihood (e.g., contact-

Fig 1. GPS locations of individual Ebola deaths (2014-2016) in the community identified through the

use of mobile phones, collected in the neighbouring area of the capital (Freetown) in Sierra Leone.

See the section Ebola Outbreak Data for more details.

https://doi.org/10.1371/journal.pcbi.1005798.g001
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type partial-likelihood approach [13, 14] and likelihood-free ABC approach [15]) may also be

pursued. There also have been advances for more efficient parameters inference of certain clas-

ses of spatial models—for example, [16] proposes a double Metropolis-Hastings sampler for

certain spatial models with intractable normalizing constants. Nevertheless, there is still a need

of developing new statistical frameworks which allow for both full-likelihood-based model

inference and, importantly, a statistically and biologically interpretable forward-prediction

machinery that naturally integrates with mechanistic disease models and the general suscepti-

ble population.

In this paper, we develop a framework that aims to accommodate individual-level spatio-

temporal data, both in a mechanistic manner and accounting for the general (susceptible) pop-

ulation. The approach taken can be viewed as being rooted in spatio-temporal point processes.

In essence, we view the process of transmission (transitions from S to E) as a marked spatio-

temporal point processes where the marks are bivariate and specify the subsequent sojourn

times in the E and I classes for the respective exposed individual. For this formulation the con-

ditional intensity becomes tractable as described in Model and Methods. We then exploit ideas

that are standard in Bayesian computation—in particular data augmentation—to accommo-

date the lack of observation of transmission events.

We focus on epidemic outbreaks that are mainly attenuated by a time-varying transmissi-

bility e.g. due to controls or seasonal changes of transmissibility, which is also the case for the

recent West Africa Ebola outbreak [17, 18]. We also allow the occurrence of infections to be

moderated both by the distance dependency of spatial infectivity and the effect of spatially het-

erogeneous (susceptible) population density. Such a framework enables a machinery that can

be used to infer system parameters from the history of outbreaks and, more importantly, to

predict the future dynamics of an epidemic. Our work represents a key generalization and

Fig 2. A schematic illustration of examples of existing approaches. (a) SEIR approach on patch level [7–9]. The study area is

partitioned into pre-defined grids/patches, where grid-points/patches with any infected individuals (i.e. the black dots) are classified as

infected (E) and grid-points without as susceptible (S). After the classification, each grid—Infected (darker gray) or Susceptible (lighter

gray)—is treated as a single entity for model fitting. (b) Transmission-network-based (partial-likelihood) approach [4, 10–12]. The unknown

susceptible population is completely ignored. Consider only the set of infected individuals and infer the relations, for example, the

transmission path (the arrows), among them. This approach however, in contrast to the conventional SEIR model, does not delineate a

mechanism of how a new infection can arise among the general (susceptible) population. Such a limitation, in particular, renders a

complete forward epidemic prediction implausible.

https://doi.org/10.1371/journal.pcbi.1005798.g002
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extension of the work in [4, 19], notably by accounting for the effect of heterogeneous popula-

tion density and considering a broader class of disease models.

Our methodology is first tested using simulated examples. We also compare our framework

with the conventional, and often computationally challenging, individual-based SEIR model

(which takes into account each individual in the population explicitly). Finally, it is applied to

the Ebola outbreak data (Fig 1 and Ebola Outbreak Data), demonstrating its relevance to realis-

tic epidemics of major current importance.

Models and methods

The mechanistic transmission model

We model spatio-temporal transmission, in continuous time and space and over a heteroge-

neous landscape with varying population density. The framework we apply to model transmis-

sion is closely related to the contact distribution model [20]. Consider the situation where

there are n(t0) infectious individuals at time t0 among an entirely susceptible population. A

new infection occurs as the first event in a non-homogeneous Poisson process with a time-

varying rate n(t0) × β(t) with

bðtÞ ¼ b� exp ð� otÞ; ð1Þ

for t� t0, where β represents the baseline transmissibility (i.e. the baseline intensity) of an

infectious individual in the absence of control measures. Multiple-level baseline transmissibil-

ity βi, i = 1, 2, . . . may also be considered, for example, to represent heteregeneous transmissi-

bility among different age groups (see later Example: Application to the Ebola Outbreak Data).

The parameter ω quantifies the efficacy of controls that serves to reduce disease transmissibilty

[21, 22]. Note that primary/background infection can be accommodated by adding a perma-

nent infectious source presenting an additional rate α (i.e. the total Poisson rate becomes

α + β × exp(−ωt)).
The source of infection of the newly infected/exposed individual is randomly chosen from

the n(t0) infectious individuals. It is assumed that the probability of the new infection being at

a certain distance r and direction θ away from the source of infection, is determined by the

movement patterns of infectious individuals and the density of the susceptible population.

Specifically, G = (r, θ) is drawn from a density,

gðG; Z; ŝÞ ¼ f ðr; ZÞ � hðyjr; ŝÞ; ð2Þ

where ŝ is the population density across the study area. Following Eq 2, the distance r is first

drawn from f(r; η), a monotonically decreasing density function that specifies the likelihood of

spatial movement over distance [23–25]. Specifically, we assume r follows an Exponential(η)

distribution, i.e.,

f ðr; ZÞ ¼ Z� exp ð� ZrÞ: ð3Þ

Given r, the position of the new infection is determined by a subsequent random draw θ from

hðyjr; ŝÞ, the density of θ corresponding to the circle with radius r centered at the source of

infection. When population density is homogeneous, θ may be drawn uniformly from 0 to

2π—i.e., given the homogeneous population density, there is no a priori belief that one part of

the circle (i.e. the arc) is more susceptible to the occurrence of new infection than another. We

consider a more general scenario with varying population density ŝ. A natural approach in

specifying hðyjr; ŝÞ is to use the population density along the circumference of the circle,

Modelling individual-level spatio-temporal disease data
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denoted by sðljr; ŝÞ, to account for the effect of heterogeneous landscape, so that

Z y0

0

hðyjr; ŝÞdy ¼

Z l0

0

sðljr; ŝÞdl; ð4Þ

where l0 is the arc length corresponding to an arbitrary angle θ0. It is noted that, when the

source of infection is the primary/background, r and θ become irrelevant, and gðG; Z; ŝÞ
reduces to the (normalized) population density so that the probability of the new infection

occurring in a neighbourhood of a particular point is proportional to the population density at

that position.

Subsequently, the new infected individual is assumed to spend random times in classes

E and I which are modelled using an appropriate distribution such as a Gamma or a Weibull

distribution. Specifically, following [4], we use a Gamma(γ, λ) with mean γ and s.d. λ for

the random time x spent in class E, and for the random time x spent in class I we use an

Exponential 1

φ

� �
with mean φ [4]. All sojourn times are assumed independent of each other

given the model parameters.

In S1 Text, we also provide a concise description of the algorithm for simulating from the

described model.

Complete-data likelihood

Let T be the duration of the observation period, and let χE� χI� χR denote the sets of individu-

als who have entered class E, class I and class R by T respectively. Also, let E = (. . ., Ej, . . .)

denote the exposure times for j 2 χE, I = (. . ., Ij, . . .) denote the times of becoming infectious

for j 2 χI and R = (. . ., Rj, . . .) denote the times of recovery or removal for j 2 χR. The densities

of the sojourn times in class E and class I are denoted by fE and fI respectively, with their corre-

sponding cumulative distribution functions denoted by FE and FI. Also, as previously defined,

n(t) is the total number of infectious individuals at time t. Finally, for j 2 χE, let ψ = (. . ., ψj, . . .)

denote the collection of sources of infection for infected individuals, and G = (. . ., Gj, . . .)

denote their positions relative to the sources of infections where Gj = (rj, θj).

Assuming complete data z = (E, I, R, G, ψ) and model parameters Θ = (α, β, γ, λ, φ, η, ω),

we can express the likelihood as

LðΘ; zÞ ¼ expf�
Z T

0

ðaþ nðtÞbðtÞÞdtg

�
Y

j2w
ð� 1Þ

E

Pðj;cjÞ � gðGj; Z; ŝÞ � ð1=rjÞ

�
Y

j2wI

fEðIj � Ej; g; lÞ �
Y

j2wR

fIðRj � Ij; φÞ

�
Y

j2wEnI

f1 � FEðT � Ej; g; lÞg �
Y

j2wInR

f1 � FIðT � Ij; φÞg

ð5Þ

Here w
ð� 1Þ

E denotes χE with the earliest exposure excluded. The contribution to the likelihood

arising from the infection of j by the particular source ψj is given by

Pðj;cjÞ ¼

a; if individual j is a primary=background case;

bðEjÞ; if cj 2 wI at time Ej:

8
<

:
ð6Þ
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The first two lines in Eq 5 together represent the contribution to the likelihood arising from the

observed sequence of exposure events. The third and fourth lines represent the contribution to

the likelihood of the sojourn times in class E and I respectively for the exposed individuals.

For mathematical clarity, we have so far discussed a general case where the population den-

sity along the circumference sðljr; ŝÞ is assumed to be continuous. In practice, however, the

data of population density over a study area is often provided in a discrete form, mostly on the

grid level [26] (see also Fig 1). We describe how this special case may be handled practically in

S1 Text and S1 Fig.

Statistical inference

We conduct Bayesian inference of partially observed epidemics using the process of data aug-

mentation supported by Markov chain Monte Carlo methods [4, 27–29]. Given observed par-

tial data y, including times of symptom onset and death times, the inference involves sampling

from the joint posterior distribution π(Θ, z|y)/ L(Θ; z)π(Θ), where z represents the complete

data and π(Θ) represents the prior distribution of model quantities, such that the complete z is

reconstructed, or ‘imputed’. We use weak uniform priors U(0, 100). It is noted that, in analyz-

ing the Ebola outbreak data (see Example: Application to the Ebola Outbreak Data) where z =

(E, I, R, G, ψ), other than the parameters in Θ = (α, β, a, b, c, η, ω), the exposure times E and

the sources of infections ψ (i.e. the transmission tree) are unobserved and are also to be

inferred [4, 27].

Results

Validation of model inference

In this section we test our methodology using simulated datasets. 10 independent epidemics

are simulated from the model described in Model and Methods, parameterized by a set of

model parameter values arising from fitting to an Ebola outbreak data (see Example: Applica-
tion to the Ebola Outbreak Data). The same observation period, geographical area and popula-

tion density as the Ebola data are considered. Fig 3a shows an exemplar simulated epidemic.

Similar to the application to the Ebola outbreak data, we also consider age-specific baseline

transmissibility of an infectious individual, i.e. β1 for age less than 15 and β2 for age greater

than or equal to 15. Subsequently, we fit our model to each of the simulated epidemics and

obtain the posterior samples of the model parameters. Fig 3b suggests that the model parame-

ters can be accurately estimated from the corresponding inferred posterior distributions which

cluster around the true parameter values. We also test with another set of simulated datasets in

which we assume a different distribution of population density, suggesting the similar accuracy

in parameter estimations (S2 Fig).

Comparison with individual-based SEIR model

Conventional SEIR models, which require an explicit account of the contact network among

all subjects, have proven to be useful in studying patch-level level disease transmission (Fig 2a),

e.g. among farms, towns and cities [7, 27]. While these models are not theoretically restricted

to the patch-level, they are often computationally challenging for individual-level data arising

from moderate- to large-size populations. Although these models are not preferable in the sce-

nario considered in the paper, they may be utilized to generate ‘reference’ epidemics that can

be subsequently used for further assessing our framework.

In this section we perform simulation studies to understand how our framework may cap-

ture the temporal and spatial dynamics of the epidemics generated from the SEIR model. We

Modelling individual-level spatio-temporal disease data
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focus on simulations from an individual-based and susceptible-explicit SEIR model, in a het-

erogeneous landscape, that give rise to epidemics in which around 5% of a study population

becomes infected (within 50 days of the initial infection). We note that the prevalence we con-

sider is significantly higher than that found in the recent Ebola outbreak and matches more

closely other, more transmissible viruses such as influenza [30]. We consider simpler scenarios

Fig 3. Validation of model inference. (a) Temporal and spatial distributions of the cases in an epidemic simulated from our model; noted that

the spatial coordinates are converted to distance (kilometers) relative to the point where Lat = 8.3 Lon = -13.1; (b) Model parameters used for

simulating 10 independent epidemics from our model are indicated by the dotted lines; the inferred posterior distributions of the model

parameters are also shown.

https://doi.org/10.1371/journal.pcbi.1005798.g003

Modelling individual-level spatio-temporal disease data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005798 October 30, 2017 8 / 18

https://doi.org/10.1371/journal.pcbi.1005798.g003
https://doi.org/10.1371/journal.pcbi.1005798


Fig 4. Comparison with the individual-based SEIR model. ‘Real’ epidemics (black dots and line) are first simulated from

an individual-based SEIR model (see also S1 Text). Subsequently, our proposed framework is fitted to the simulated

epidemics. The fitted model is then used in predictive mode to simulate epidemics (95% C.I. in grey). We first compare the

incidence with 5-day intervals between the ‘real’ epidemics (from SEIR) and the forward-simulated epidemics (from our fitted

model). We also compare the (normalized) ‘real’ distance-dependent spatial infectivity (solid line), with that inferred from our

Modelling individual-level spatio-temporal disease data
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with no control measures and known latent period distribution. Details of the SEIR model are

given in S1 Text. Fig 4 suggests that our framework can capture key temporal and spatial

dynamics of the epidemic simulated from the individual-based SEIR model. Similar results are

observed in testing with another set of simulated epidemics (S3 Fig), in which we consider a

scenario with a different population density distribution and a fatter tail in the spatial trans-

mission distance.

We also perform a comparison between the run-time of our model inference and that of

performing full individual-based SEIR model inference, which suggests that ours can be about

780 times faster (see also S1 Text).

Example: Application to the Ebola outbreak data

Ebola outbreak data. We also deploy our methodology to a dataset describing Ebola

transmission in the community, collected from the Safe and Dignified Burials (SDB) pro-

gramme conducted by the International Federation of Red Cross (IFRC), between Oct 20,

2014 and March 30, 2015 in Western Area (which comprises the capital Freetown and its sur-

rounding area) in Sierra Leone. The dataset contains mobile-phone-reported GPS locations

of where the bodies of 200 fatalities tested positive for Ebola (Fig 1). Age, sex, time of burial

(which was usually performed within 24h of death) and symptom-onset time were also

recorded. Population density data were obtained from [26].

The same dataset was previously analyzed in [4], using a transmission-network-based (par-

tial-likelihood) approach (Fig 2b). Although it was shown that such an approach is useful for

inferring key epidemiological quantities (e.g. basic reproductive number R0) and sampling the

summary topology of the transmission tree among the observed cases, it does not consider the

general (susceptible) population—as a result it cannot be used to establish a relation between

infections and the general population, something that is necessary if more general model-

based forward predictions are to be made. In this section we compare our results with the find-

ings of the previous analysis. In particular, we show how a model-based, forward prediction

may be made using our methodology. In this section we consider age-specific baseline trans-

missibility, i.e. β1 for age less than 15 and β2 for age greater or equal to 15. In the forward simu-

lation, the distribution of age (group) for a new infection is assumed to be the empirical

distribution of the age groups of the observed data (which may also be estimated from more

general demographic data).

Model estimates

Reproductive number. A key epidemiological parameter is the so-called basic reproduc-

tive number R0, or the time-dependent variant effective reproductive number Reff, which quan-

tifies the average number of secondary cases generated by a given infection [31–33]. In our

framework the transmission tree is imputed, from which we can compute R0 and Reff as sum-

mary statistics. We estimate R0 to be 2.0 with 95% C.I. [1.8, 2.2] (Fig 5a), which is slightly

lower than the estimate 2.39 in [4]. The estimate of Reff (Fig 5b) is also broadly consistent with

that found in [4] and in the literature (e.g., [31]). It is also noted that degree of super-spreading

was commonly characterized using a dispersion parameter k summarized from the transmis-

sion tree [4, 34, 35]. Estimated values for k are 0.47 and 0.37, using our methodology and that

framework (dotted line) using the posterior parameter means. 500 random set of parameter values from the posterior

distribution are drawn and their corresponding inferred spatial infectivity (grey lines) are also shown. Results from 5

independent simulations are shown (a)–(e).

https://doi.org/10.1371/journal.pcbi.1005798.g004
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used in [4] respectively, both indicating significant super-spreading (k< 1), albeit to a lesser

extent (i.e. higher k) here.

Age-specified transmissibility and distance of transmission. In [4], it was found that

certain age groups tend to be more transmissible—in particular, infected individuals younger

than 15 or older than 45 years. Using our methodology, although we find no significant differ-

ence among subgroups of those older than 15, there is still clear evidence that cases less than

15 tend to be most transmissible (Fig 5c). In fact, this age group was found to be the most

transmissible in [4]. The median distance of transmission is estimated to be 0.85km [0.01,

6.15], which is about one third of the estimate 2.51km found in [4]. Such a discrepancy may

reflect the fact that the heterogeneous (susceptible) population is now taken into account, with

the presence of many disease-free areas reducing the likelihood of long-range transmission. A

shorter distance of transmission may also be potentially more accurate, considering that the

pathogen may have spread predominantly by caring within the community, e.g., through fam-

ily contacts [36]. Estimates of other model parameters are given in S1 Table, showing broad

consistency with the literature [4, 37, 38]. However, it is noted that our estimate of mean

infectious period is lower than from cases detected within the clinical care system (e.g. mean

Fig 5. Model estimates for the Ebola dataset. (a) The posterior distribution of R0. (b) The posterior distribution of Reff; median values are

connected by the dots and lines, and the 95% C.I. are indicated by the bars. The observed epidemic curve, scaled by dividing by 6, is

superimposed (dotted grey line). (c) The posterior distributions of age-specified β. (d) The posterior distribution of distance of transmission with

median value indicated by the solid black line; the dotted line represents the median value estimated in [4].

https://doi.org/10.1371/journal.pcbi.1005798.g005
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infectious period 8d estimated for patients who received clinical care [39]). As discussed in [4],

this discrepancy potentially highlights systematic differences between community-based cases

and cases notified in clinical care systems, where community-based cases may have progressed

more rapidly.

A more general model prediction

In contrast to a transmission-network based approach [4], our framework establishes a rela-

tion between infections and the general (susceptible) population. Specifically, it proposes a

mechanism for how a new infection, beyond the set of observed infected individuals, can arise

among the general (susceptible) population. This in turn allows us to perform a more general

forward simulation without conditioning on the set of observed cases. Fig 6 shows the (poste-

rior predictive) distributions of some temporal and spatial summary statistics of the epidemics

simulated from the estimated model, from which it can be discerned that the model can gener-

ate epidemics that are consistent with the observed one. We also show out-of-sample predictiv-

ity for the epidemic curve for the second-half of the epidemic duration (Fig 6b). It is noted that

in assessing the spatial fit, beside using a relatively crude global measure (i.e. Moran’s I index

(Refs. [7])), we also consider Ripley’s L function [40, 41] which is much more informative for

characterizing clustering/dispersion of point data.

Discussion

More precise individual-level spatio-temporal data have become increasingly available in

recent years due to the advent of ‘digital epidemiology’ [1]. One key challenge is how we

may extract maximal information from such data, especially through concurrent develop-

ment of new statistical methods, as existing approaches suffer from certain limitations (see

Introduction). In particular, as SEIR-type models can be computationally challenging for

individual-level spatio-temporal data, new frameworks are needed to accommodate such

data in a mechanistic manner. The recent Ebola outbreak in West Africa (2014-2016) high-

lights the need, in particular, for a statistically sound and computationally efficient frame-

work that is both able to integrate individual temporal and spatial information and, more

importantly, perform a more general forward prediction which needs to take into account

the general susceptible population [4].

In this paper, we have proposed a novel mechanistic framework to address the research

gap. Application to the Ebola outbreak data shows broad consistency of key epidemiological

quantities with a previous analysis using a transmission-network-based partial-likelihood

approach [4], despite a significantly lower, and potentially more accurate [36], median value of

estimated distance of transmission (0.85km vs 2.51km). We have shown that our methods can

be used in predictive mode to simulate epidemics (among the general population) that are con-

sistent with the observed temporal and spatial patterns of the real outbreak, enabling a more

general epidemic predictive framework. We also tested our model inference using simulated

examples. Our model was also compared to the more explicit (but computationally challeng-

ing) individual-based SEIR model, showing that our model can be a reasonable and computa-

tionally-efficient surrogate.

There are a few simplifying assumptions made in our paper. For example, we have focused

on epidemic outbreaks that are mainly attenuated by a time-varying transmissibility e.g. due to

controls or seasonal changes of transmissibility. Should susceptible depletion play a key role in

attenuating the epidemics, our framework may be modified accordingly—e.g., for a given

region, adding a component that specifies the decreased likelihood of occurrence of new infec-

tions with increased density of existing infections, to mimic the effect of susceptible depletion.
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Fig 6. Posterior predictive distributions of temporal and spatial summary statistics of epidemics forward

simulated from the estimated model. (a) One-epidemic ahead in-sample model prediction. The observed

epidemic is indicated by the dots and the line. 95% C.I. of the simulated epidemics at each week are indicated by

the grey bands. Dashed line represents the median values of the simulated epidemics. (b) One-epidemic ahead

in-sample and out-of-sample model prediction. We first estimate the model parameters using data from the first

half of the epidemic duration (week 1 to week 11) and re-simulate from the estimated model from the beginning to

the end of the epidemic duration (week 24). (c) Measure of global spatial autocorrelation using Moran’s I index

(Refs. [7]) which ranges from -1 to 1 (a value close to 1 indicating strong clustering and close to -1 indicating

strong dispersion), applied to epidemics before and after peak. The index corresponding to the observed

epidemic is indicated by the dotted line. (d) Measure of clustering/dispersion using Ripley’s K, or its transformation

Ripley’s L [40, 41]. Compared to global measures such as the Moran’s I, this function determines clustering/

dispersion of point data over a range of distances (see S1 Text for more details), without requiring certain

aggregation of the points, hence representing a more powerful and informative measure for our context. We
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Nevertheless, the effect of susceptible depletion may only be significant on a very local scale

such as that of the individual household. Moreover, it does not appear to be a determining fac-

tor in controlling the recent Ebola outbreak, at least on the ‘global’ scale [17] (Fig 6). We have

considered random movement patterns of infectious individuals that may be reasonably

abstracted by a monotonically decreasing density function [23, 24]. For future work, this

assumption may be relaxed to model more complicated scenarios, such as spread of splash-dis-

persed fungal pathogens [43] in which the spreading distance may also depend on the suscepti-

ble population. In this case, one may modify the density for the distance by also taking into

account the distribution of susceptible population in the annuli along the radius of the circle

centered at a particular source of infection.

The transmission rate of an infectious case in our model is independent of the (local) sus-

ceptible population density. This assumption may be relaxed to allow for more “localized”

transmission rates. For example, a model taking into account the heterogeneity of the suscepti-

ble population more explicitly may be obtained by allowing the infection rate for each case to

be dependent on the local density of susceptibles by taking an appropriate weighted average of

the latter with respect to the kernel function, at the expense of increased computational com-

plexity. When spatial heterogeneity is present at a scale that is fine with respect to the range of

transmission, then such an average may exhibit little variability over cases. Nevertheless, we

note the ability of our approach to identify a kernel that matches that identified when the full

SEIR model is fitted. Moreover, our model appears to be reasonable for the case of the Ebola

outbreak (Fig 6).

We have considered scenarios that the entire population is susceptible, an assumption

which generally holds for newly emerging infections. Vaccination, for instance, decreases the

proportion of susceptibles among the general population, and has an important impact on

the geographical spread of viruses (e.g. [44]). The effect of vaccination can be readily incor-

porated by our framework, for example, by reducing the (effective) susceptible population

proportional to the vaccination rate in a particular region. The Ebola dataset we analyzed is

likely to be subject to underreporting, which may have resulted in, for example, a biased

(lower) estimate of the degree of superspreading [4]. Future work which takes into account

the underreporting explicitly may be considered. We hope that our proposed framework can

provide an essential step for the systematic modelling of the increasingly available individ-

ual-level disease data.

Supporting information

S1 Text. Supplementary information. (a) Simulation algorithm for our proposed individual

model. (b) Practical implementations in dealing with the grid-nature of population density

data. (c) Detailed procedures for simulating epidemics from the individually-based SEIR

model for comparing it with our proposed framework (see also section Comparison with Indi-
vidual-based SEIR Model). (d) Speed gain in our model inference by comparing to individual-

SEIR model inference. (e) Supplementary information for Ripley’s L function which was used

to summarize the spatial clustering of the observed and model-simulated Ebola epidemics.

(PDF)

consider and compute the L function using the the R package spatstat [42]. The measure corresponding to the

observed epidemic is indicated by the solid line, along with the 95% C.I. of the simulated epidemics enclosed in

the grey band. They indicate that the spatial clustering/dispersion of observed (point) data are captured

reasonably well.

https://doi.org/10.1371/journal.pcbi.1005798.g006
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S1 Fig. Dealing with the grid nature of population density data. Intersecting with the (dot-

ted) grid lines, the circumference of the circle with radius r centered at a source of infection is

divided into many arcs. Each arc and the grid it belongs to has a homogeneous population

density. One arc segment (in grey), for example, has arc length Δl and arc segment angle Δθ.

(PDF)

S2 Fig. Validation of model inference. Here we consider a different distribution of popula-

tion density compared to the one used for the Ebola dataset in the main text. In particular, we

consider a random shuffling of the original grids of population density. (a) Temporal and spa-

tial distributions of the cases in an epidemic simulated from our model; noted that the spatial

coordinates are converted to distance (kilometers) relative to the point where Lat = 8.3 Lon =

-13.1; (b) Model parameters used for simulating 10 independent epidemics from our model

are indicated by the dotted lines; the inferred posterior distributions of the model parameters

are also shown.

(PDF)

S3 Fig. Comparison with the individual-based SEIR model. Here we consider a different dis-

tribution of population density compared to the one used for the Ebola dataset in the main

text. In particular, we consider a random shuffling of the original grids of population density.

We also allow for a fatter tail of spatial transmission distance. ‘Real’ epidemics (black dots and

line) are first simulated from an individual-based SEIR model (see also S1 Text). Subsequently,

our proposed framework is fitted to the simulated epidemics. The fitted model is then used in

predictive mode to simulate epidemics (95% C.I. in grey). We first compare the incidence with

5-day intervals between the ‘real’ epidemics (from SEIR) and the forward-simulated epidemics

(from our fitted model). We also compare the (normalized) ‘real’ distance-dependent spatial

infectivity (solid line), with that inferred from our framework (dotted line) using the posterior

parameter means. 500 random set of parameter values from the posterior distribution are

drawn and their corresponding inferred spatial infectivity (grey lines) are also shown. Results

from 5 independent simulations are shown (a)–(e).

(PDF)

S1 Table. Supplementary table. Estimates of model parameters in fitting our framework to

the Ebola dataset.

(PDF)

Author Contributions

Conceptualization: Max S. Y. Lau, Benjamin D. Dalziel.

Data curation: Max S. Y. Lau, Amanda McClelland, Benjamin D. Dalziel.

Formal analysis: Max S. Y. Lau.

Funding acquisition: Bryan T. Grenfell.

Investigation: Max S. Y. Lau, Gavin J. Gibson.

Methodology: Max S. Y. Lau, Gavin J. Gibson, Hola Adrakey.

Project administration: Max S. Y. Lau.

Validation: Max S. Y. Lau, Gavin J. Gibson.

Visualization: Max S. Y. Lau.

Writing – original draft: Max S. Y. Lau.

Modelling individual-level spatio-temporal disease data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005798 October 30, 2017 15 / 18

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005798.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005798.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005798.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005798.s005
https://doi.org/10.1371/journal.pcbi.1005798


Writing – review & editing: Max S. Y. Lau, Gavin J. Gibson, Hola Adrakey, Steven Riley, Jon

Zelner, George Streftaris, Sebastian Funk, Jessica Metcalf, Benjamin D. Dalziel, Bryan T.

Grenfell.

References
1. Salathe M, Bengtsson L, Bodnar TJ, Brewer DD, Brownstein JS, Buckee C, et al. Digital epidemiology.

PLoS Comput Biol. 2012; 8(7):e1002616. https://doi.org/10.1371/journal.pcbi.1002616 PMID:

22844241

2. Bengtsson L, Lu X, Thorson A, Garfield R, Von Schreeb J. Improved response to disasters and out-

breaks by tracking population movements with mobile phone network data: a post-earthquake geospa-

tial study in Haiti. PLoS Med. 2011; 8(8):e1001083. https://doi.org/10.1371/journal.pmed.1001083

PMID: 21918643

3. Robertson C, et al. Mobile Phone–based Infectious Disease Surveillance System, Sri Lanka- Volume

16, Number 10,October 2010-Emerging Infectious Disease journal-CDC. 2010;

4. Lau MS, Dalziel BD, Funk S, McClelland A, Tiffany A, Riley S, et al. Spatial and temporal dynamics of

superspreading events in the 2014–2015 West Africa Ebola epidemic. Proceedings of the National

Academy of Sciences. 2017; 114(9):2337–2342. https://doi.org/10.1073/pnas.1614595114

5. Daley DJ, Vere-Jones D. An introduction to the theory of point processes, vol. 1. Springer, New York;

2003.

6. Kenah E, Britton T, Halloran ME, Longini IM Jr. Molecular infectious disease epidemiology: survival

analysis and algorithms linking phylogenies to transmission trees. PLoS Comput Biol. 2016; 12(4):

e1004869. https://doi.org/10.1371/journal.pcbi.1004869 PMID: 27070316

7. Lau MS, Marion G, Streftaris G, Gibson GJ. New model diagnostics for spatio-temporal systems in epi-

demiology and ecology. Journal of The Royal Society Interface. 2014; 11(93):20131093. https://doi.org/

10.1098/rsif.2013.1093

8. Catterall S, Cook AR, Marion G, Butler A, Hulme PE (2012) Accounting for uncertainty in colonisation

times: a novel approach to modelling the spatio-temporal dynamics of alien invasions using distribution

data. Ecography 35(10):901–911. https://doi.org/10.1111/j.1600-0587.2011.07190.x

9. Jewell CP, Keeling MJ, Roberts GO. Predicting undetected infections during the 2007 foot-and-mouth

disease outbreak. Journal of the Royal Society Interface. 2009; 6(41):1145–1151. https://doi.org/10.

1098/rsif.2008.0433

10. Haydon DT, Chase-Topping M, Shaw D, Matthews L, Friar J, Wilesmith J, et al. The construction and

analysis of epidemic trees with reference to the 2001 UK foot–and–mouth outbreak. Proceedings of the

Royal Society of London B: Biological Sciences. 2003; 270(1511):121–127. https://doi.org/10.1098/

rspb.2002.2191
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