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Abstract Dengue is a major health burden, but it can be challenging to examine transmission

and evaluate control measures because outbreaks depend on multiple factors, including human

population structure, prior immunity and climate. We combined population-representative paired

sera collected before and after the 2013/14 dengue-3 outbreak in Fiji with surveillance data to

determine how such factors influence transmission and control in island settings. Our results

suggested the 10–19 year-old age group had the highest risk of infection, but we did not find

strong evidence that other demographic or environmental risk factors were linked to

seroconversion. A mathematical model jointly fitted to surveillance and serological data suggested

that herd immunity and seasonally varying transmission could not explain observed dynamics.

However, the model showed evidence of an additional reduction in transmission coinciding with a

vector clean-up campaign, which may have contributed to the decline in cases in the later stages of

the outbreak.

DOI: https://doi.org/10.7554/eLife.34848.001

Introduction
In recent years, the reported incidence of dengue has risen rapidly. In the Asia-Pacific region, which

bears 75% of the global dengue disease burden, there are more than 1.8 billion people at risk of

infection with dengue viruses (DENV) (World Health Organization, 2009). Increased air travel and

urbanisation could have contributed to the geographic spread of infection (Gubler, 1998;

Simmons et al., 2012), with transmission by mosquitoes of the Aedes genus, including Aedes

aegypti and Aedes albopictus (Halstead, 2007). DENV has four serotypes circulating, with infection

conferring lifelong protection against the infecting serotype and short-lived protection against the

Kucharski et al. eLife 2018;7:e34848. DOI: https://doi.org/10.7554/eLife.34848 1 of 26

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.34848.001
https://doi.org/10.7554/eLife.34848
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


others (Sabin, 1952; Guzmán and Kourı́, 2002). Although four serotypes of DENV may co-circulate

in South East Asia, only one serotype circulates in most of the South Pacific islands at any point in

time (Cao-Lormeau et al., 2014; Li et al., 2010).

Between November 2013 and July 2014, a major outbreak caused by DENV-3 occurred in Fiji,

with more than 25,000 suspected cases reported (Figure 1A). Prior to the 2013/14 outbreak, there

were eleven outbreaks of dengue recorded in Fiji, involving serotypes 1, 2 and 4 (Table 1). Most

cases in 2013/14 occurred on Viti Levu, the largest and most populous island. This is administratively

divided into the Central Division, which includes the port-capital Suva, and Western Division, which

contains the urban centres of Lautoka and Nadi, where Fiji’s major international airport is located.

Dengue transmission in Central and Western Divisions is likely to be driven mostly by the Aedes

aegypti vector, with Aedes albopictus most abundant in the Northern Division. Aedes polynesiensis

and Aedes pseudoscutellaris are also present in all divisions (Maguire et al., 1971; Prakash et al.,

2001). In response to the 2013/14 outbreak, considerable resources were dedicated to implement-

ing control measures, including a nationwide vector clean-up campaign between 8th and 22nd

March 2014 (Break Dengue, 2014). As well as media coverage and distribution of flyers to raise

awareness about dengue prevention and protection, a major operation was put in place to remove

rubbish that could act as egg laying habitats for mosquitoes. In total, forty-five tonnes of tyres and

twenty-five tonnes of other containers were removed during this period.

Large dengue outbreaks can place a substantial public health burden on island populations

(Fagbami et al., 1995; Sharp et al., 2014). However, understanding the dynamics of infection and

evaluating the impact of vector control measures remains challenging. There is a limited evidence

base for control measures even in controlled trials (Bowman et al., 2016; Heintze et al., 2007), and

post-outbreak evaluation is hindered by the fact that the size and duration of major outbreaks can

be influenced by several factors, including population immunity, human movement, seasonal

eLife digest Dengue fever – a disease spread by mosquitos – causes large outbreaks in Asia

and the South Pacific islands. Health agencies often try to reduce the spread of the disease by

removing mosquito breeding grounds, like old tires and containers that may hold standing water.

But it can be difficult to tell whether these preventive measures work because dengue transmission

depends on many factors, including the weather and how many people had developed immunity

because of previous infections.

A common way to study patterns of infection and immunity is to collect blood samples from a

subset of the population before and after an outbreak. Unfortunately, large dengue outbreaks occur

sporadically on islands, making it hard to set up a study like this ahead of an outbreak. During 2013

and 2014, there was a major dengue outbreak in Fiji, with over 25,000 suspected cases reported. In

response, the government introduced a nationwide mosquito clean-up campaign. As luck would

have it, a group of researchers had collected blood samples immediately before the outbreak for an

unrelated study of typhoid fever and leptospirosis.

Now, Kucharski et al. – who include the researchers who collected those pre-outbreak blood

samples – show that the clean-up campaign coincided with a reduction in transmission of the

disease. Participants whose blood was collected before the dengue outbreak were invited to

provide another blood sample after the dengue outbreak. This allowed Kucharski et al. to identify

individuals who had already developed immunity to dengue before the outbreak and those who

were likely infected during the outbreak.

Comparing blood samples taken before and after the outbreak revealed that children and

teenagers between the ages of 10 and 19 had the greatest risk of infection during the outbreak. No

other demographic or environmental factors were strongly linked to the likelihood of infection.

Computer models using the data also showed that the clean-up efforts could explain the reduced

dengue transmission during the outbreak. These findings suggest that studying immunity against

dengue can lead to a better understanding of disease transmission. This may help health agencies

to gauge the effects of efforts to control this disease, and possibly forecast future outbreaks.

DOI: https://doi.org/10.7554/eLife.34848.002
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variation in transmission, and proportion of people living in urban, peri-urban and rural communities.

In Fiji, dengue outbreaks typically occur during the wetter, warmer season between December and

July, when vectors are most abundant (Goettel et al., 1980). Although surveillance data can provide

broad insights into arbovirus transmission patterns (Cuong et al., 2011; Funk et al., 2016;

van Panhuis et al., 2015), and cross-sectional serosurveys can be used to measure contemporary

levels of immunity (Aubry et al., 2015; Ferguson et al., 1999; Maguire et al., 1974;

Figure 1. Geographical distribution of weekly lab tested suspected dengue cases in Northern (green), Western (blue) and Central (yellow) divisions

between 27th October 2013 and 1 st July 2014. Points on the maps show locations of cases arranged by health centre they reported to; these are

plotted with jitter and transparency to show concentrations of cases. (A) Weekly reported case totals for Northern, Western, Central and Eastern

divisions. (B) Serosurvey study locations. Black circles show the 23 study clusters included in the analysis. (C) Age distribution of Central Division in the

2007 census (blue line) and ages of serosurvey participants in 2013 (black line).

DOI: https://doi.org/10.7554/eLife.34848.003
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Waterman et al., 1993), characterising infection dynamics in detail requires cohort-based seroepi-

demiological studies (Cuong et al., 2011; Reiner et al., 2014), which can be difficult to implement

in island settings where outbreaks are infrequent and difficult to predict.

Immediately before the 2013/14 dengue outbreak in Fiji, a population-representative serological

survey had been conducted to study leptospirosis and typhoid (Lau et al., 2016). To investigate pat-

terns of dengue infection in 2013/14, we followed up participants from this survey in Central Divi-

sion, to obtain a set of paired pre- and post-outbreak serological samples (see Materials and

methods). We tested the paired samples for anti-DENV IgG antibodies using ELISA and a recombi-

nant antigen-based microsphere immunoassay (MIA), and combined these data with dengue surveil-

lance data to compare possible explanations for the outbreak dynamics. We measured age-specific

and spatial patterns of infection and reported disease, and tested whether there were demographic

and environmental risk factors associated with infection. Having characterised factors shaping indi-

vidual-level infection risk, we used a Bayesian approach to fit a transmission dynamic model to both

the serological survey and surveillance data in order to estimate the contribution of climate and con-

trol measures to the decline in transmission observed in 2014.

Results
The pre- and post-outbreak serological survey included 263 participants from the Central Division,

with age distribution of these participants consistent with the population distribution (Figure 1B–C).

We found that 58.6% of participants (154/263) were ELISA seropositive to at least one DENV sero-

type in late 2013. Two years later, in October/November 2015, this had risen to 74.5% (196/263).

Additional serotype-specific MIA tests confirmed that the largest rise in seroprevalence in Central

Division was against DENV-3, from 33.1% to 53.2% (Table 2), consistent with the majority of RT-

PCR-confirmed samples during the outbreak being of this serotype.

To characterise patterns of infection between 2013 and 2015, we first considered individual-level

demographic, behavioural and environmental factors. Using a univariable logistic regression model,

we compared seroconversion determined by ELISA with questionnaire responses about household

environment and health-seeking behaviour (Table 3). The factors most strongly associated with sero-

conversion between 2013–15 among initially seronegative participants were: living in an urban or

peri-urban environment (odds ratio 2.18 [95% CI: 0.953–5.11], p=0.068); reporting fever in preceding

Table 1. Reported dengue outbreaks in Fiji between 1930–2014.

Two studies (Fagbami et al., 1995; Maguire et al., 1974) also included a post-outbreak serosurvey in Central Division. *There is also

evidence of DENV-3 circulation during this period (Singh et al., 2005).

Year Main serotype Reported cases Seroprevalence Source

1930 ? Thousands (Maguire et al., 1971)

1944-5 1 Thousands (Reed et al., 1977)

1971-3 2 3413 26% (Suva) (Maguire et al., 1974)

1974-5 1 16,203 (Reed et al., 1977)

1980 4 127 (Fagbami et al., 1995)

1981 1 18 (Kiedrzynski et al., 1998)

1982 2 676 (Kiedrzynski et al., 1998)

1984-6 ? 490 (Fagbami et al., 1995)

1988 ? 22 (Fagbami et al., 1995)

1989-90 1* 3686 54% (Suva) (Fagbami et al., 1995; Waterman et al., 1993)

1997-8 2 24,780 (World Health Organization, 2000)

2001-3 1 ? (Halstead, 2008)

2008 4 1306 (PacNet Report, 2008; ProMED-mail, 2008)

2013-14 3 25,496 Fiji MOH

DOI: https://doi.org/10.7554/eLife.34848.004
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two years (odds 2.94 [1.08–8.38], p=0.037); and visiting a doctor with fever in the preceding two

years (odds 3.15 [1.06–10.10], p=0.043). Of the participants who seroconverted, 10/38 (26.3% [13.4–

43.1%]) reported visiting a doctor with fever in the preceding two years, 2/38 (5.26% [0.644–17.7%])

reported fever but did not visit a doctor, and 26/38 (68.4% [51.3–82.5%]) did not report fever

(Supplementary file 1A).

As well as estimating infection by measuring seroconversion based on threshold values, we also

considered the distribution of ELISA values. There was a noticeable right shift in this distribution

between 2013 and 2015, with ELISA values increasing across a range of values (Figure 2A). As some

of the individual-level changes in value between the two tests were likely to be due to measurement

error (Salje et al., 2014), we fitted a mixture model to the distribution of changes in ELISA value

(Figure 2B). We used a normal distribution with mean zero to capture measurement error, and a

gamma distribution to fit rise that could not be explained by this error function. The fitted model

suggested that a rise in value of at least three was more likely to be a genuine increase rather than

measurement error, as shown by the dashed line in Figure 2B.

Table 2. Number of participants who were seropositive to DENV in 2013 and 2015 as measured by ELISA and MIA.

MIA any DENV denotes participants who were MIA seropositive to at least one DENV serotype. 95% CI shown in parentheses.

Test N 2013 2013 (%) 2015 2015 (%) Difference

ELISA 263 154 58.6% (52.3–64.6%) 196 74.5% (68.8–79.7%) 16% (11.8–21%)

MIA any DENV 263 193 73.4% (67.6–78.6%) 216 82.1% (77–86.6%) 8.75% (5.62–12.8%)

MIA DENV-1 263 177 67.3% (61.3–72.9%) 198 75.3% (69.6–80.4%) 7.98% (5.01–11.9%)

MIA DENV-2 263 33 12.5% (8.8–17.2%) 41 15.6% (11.4–20.5%) 3.04% (1.32–5.91%)

MIA DENV-3 263 87 33.1% (27.4–39.1%) 140 53.2% (47–59.4%) 20.2% (15.5–25.5%)

MIA DENV-4 263 79 30.0% (24.6–36%) 99 37.6% (31.8–43.8%) 7.6% (4.71–11.5%)

DOI: https://doi.org/10.7554/eLife.34848.005

Table 3. Risk factors from a univariable logistic regression model.

Sample population was all individuals who were seronegative in 2013 (n = 97), and outcome was defined as seroconversion as mea-

sured by ELISA. Number indicates total individuals with a given characteristic.

Variable Number Odds ratio p value

Demographic characteristics

Age under 20 61 0.49 (0.21–1.13) 0.10

Male 49 0.81 (0.36–1.84) 0.62

iTaukei ethnicity 85 1.33 (0.39–5.32) 0.66

Environmental factors present

Mosquitoes 90 4.19 (0.68–80.85) 0.19

Used car tires 61 1.80 (0.77–4.42) 0.18

Open water container(s) 61 1.49 (0.64–3.58) 0.37

Air conditioning 23 0.46 (0.15–1.26) 0.15

Blocked drains 53 1.04 (0.46–2.38) 0.92

Location

Urban or peri-urban 50 2.18 (0.95–5.11) 0.07

Health seeking behaviour

Fever in preceding 2 years 20 2.94 (1.08–8.38) 0.04

Visited doctor with fever in preceding 2 years 16 3.15 (1.06–10.13) 0.04

Household member visited doctor with fever in preceding 2 years 9 2.08 (0.52–8.94) 0.30

DOI: https://doi.org/10.7554/eLife.34848.006
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To explore the relationship between the initial ELISA value and rise post-outbreak, given that an

individual had been infected, we fitted a generalized additive model to the data and weighted each

observation by the probability that a specific participant had been infected based on the dashed

line in Figure 2B. By adjusting to focus on likely infections, we found a negative relationship

between initial value and subsequent rise, with ELISA values near zero rising by around 10 units, but

higher values exhibiting a smaller rise (Figure 2C). Using this approach, we also found strong evi-

dence that self-reported symptoms were associated with larger rise in ELISA value, given likely infec-

tion. Using a logistic model with self-reported symptoms as outcome and change in value as

dependent variable, adjusting for initial value and again weighting by probability of infection, we

found that individuals who reported a fever in the preceding two years had a predicted rise in ELISA

value that was 2.2 (95% 0.77–3.6) units higher than those who did not (p=0.003). Further, individuals

who reported visiting a doctor with fever had a predicted value 3.3 (1.8–4.9) higher than others

(p=0.0005).

Examining age patterns of seroprevalence, we found an increase in the proportion seropositive

against DENV with age in both 2013 and 2015, and a rise in seroprevalence was observed in almost

all age groups after the 2013/14 outbreak (Figure 3A). However, the high levels of seroprevalence

in older age groups made it challenging to estimate age-specific probability of infection, because

there was a relative lack of serologically naive individuals in these groups to act as a denominator

(Table 4). We therefore again used rise in ELISA value as a correlate of infection, based on

Figure 2B. As well as producing more precise estimates of infection risk in older groups (Table 4),

this approach also suggested that individuals aged 10–19 years were most likely to be infected. This

is in contrast to the surveillance data, which indicated the highest per capita level of reported dis-

ease was in the 20–29 age group (Figure 3B).

Next, we explored spatial patterns of infection in different communities. Previous studies have

suggested that dengue outbreaks can spread outwards from urban hubs to more rural areas

(Cummings et al., 2004; Salje et al., 2017). A similar spatial pattern was observed from the surveil-

lance data during the early stages of the 2013/14 Fiji outbreak (Figure 4A). The first case was

reported at Colonial War Memorial Hospital (CWM), Fiji’s largest hospital located in central urban

Suva, in the week ending 4th November 2013. The outbreak took 9 weeks to reach the furthest

reporting point from CWM in Central Division, a health centre 51 km away by Euclidean distance

(i.e. as the crow flies). We found limited association between Euclidean distance from CWM and
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Figure 2. Distribution of ELISA values for anti-DENV IgG over time. (A) Distribution of values in 2013 and 2015. Orange bars show observed proportion

of samples with each value in 2013; blue bars show proportions in 2015. Dashed lines show threshold for seronegativity and seropositivity. (B) Change in

ELISA values between 2013 and 2015. Bars show distribution of values. Grey line shows estimated uncertainty in assay measurements; blue line shows

estimated increase in value following the 2013–14 epidemic; thin black line shows overall fitted distribution (model R2=0.93). Dashed line shows

probability of infection for a given rise in value. (C) Relationship between value in 2013 and rise between 2013 and 2015, adjusting for probability of

infection as shown in Figure 2B. Points show 1000 bootstrap samples of the data with replacement, with opacity of each point proportional to

probability of infection. Blue line shows prediction from generalized additive model, with data points weighted by probability of infection; shaded

region shows 95% CI (model R2=0.31).
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proportion of study cluster seropositive to DENV-3 in 2015 (Figure 4B): the Pearson correlation

between ELISA seropositivity in each cluster and distance from CWM was �= –0.12 (p=0.59); for

DENV-3 the correlation coefficient was �= –0.46 (p=0.03). However, we found no significant associa-

tion between the Euclidean distance from CWM and proportion of cluster infected (Figure 4C).

Pearson correlation between estimated proportion infected based on change ELISA value in each

cluster and distance from CWM was �= 0.22 (p=0.30); for DENV-3 the correlation was �= –0.36

(p=0.09). We did find evidence of dengue seroconversion in every cluster, however, suggesting that

the outbreak eventually spread throughout Central Division.

As we did not find strong evidence of individual or community-level heterogeneity in infection,

we incorporated the surveillance data and paired serological survey data into mathematical models

to test explanations for the observed outbreak dynamics at the division level. We considered three

model variants: a simple age-structured model of vector-borne transmission dynamics; the same

model structure, but with climate-driven variation in transmission; and a model with both climate-
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driven variation in transmission and a potential additional reduction in transmission coinciding with

the clean-up campaign in March 2014. When we jointly fitted the models to surveillance data and

age-specific immunity, as measured by seropositivity to DENV-3 by MIA in 2013 and 2015, the

model with both climate-driven variation in transmission and an additional transmission reduction

performed best as measured by AIC and DIC (Figure 5A–B and Table 5). This additional reduction

in transmission was modelled using a flexible additional sigmoidal transmission rate, and was con-

strained so that the midpoint of the decline occurred after the start of the campaign on 8th March

2014 (Figure 5—figure supplement 1); we estimated a reduction of 57% (95% CrI: 42–82%) in trans-

mission that coincided with the clean-up campaign (Figure 5C). As the effective reproduction num-

ber was near the critical value of one when the clean-up campaign was introduced (Figure 5D–E), it

suggests that the main contribution of control measures may have been to bring DENV-3 infections

to sufficiently low levels for transmission to cease earlier. We obtained the same conclusions when

ELISA rather than MIA seroprevalence was used to quantify immunity during model fitting (Table 5

and Figure 5—figure supplement 2). It was noticeable that the model fitted to the ELISA data pro-

duced a qualitatively better fit to the surveillance data than the model fitted to MIA data. This was

because the observed MIA values imposed a stronger constraint on the plausible range of model

estimated seroprevalence (Figure 5B and Figure 5—figure supplement 2B), so in comparison the

model fitted to ELISA data was able to attribute more of the slowdown in growth in the surveillance

data during January/February to the accumulation of herd immunity.

Fitting to the DENV-3 MIA seroprevalence data, we estimated that the mean basic reproduction

number, R0, over the course of the year was 1.12 (95% CrI: 1.02–1.25), with a peak value of 1.87

(1.70–2.07) in January 2014 (Table 6). Posterior estimates are shown in Figure 5—figure supple-

ment 3 and correlation plots for the transmission rate parameters are shown in Figure 5—figure

supplement 4. Accounting for stochastic variability in weekly case reporting, we estimated that 11%

(1.1–39%) of infections were reported as laboratory-tested cases and 9.3% (1.1–39%) were reported

as DLI cases. The estimated value of R0 was larger for the model fitted to ELISA data, with a mean of

1.49 (1.35–1.69); this was the result of a larger proportion of the population assumed to be initially

immune to infection.

As well as performing worse under AIC and DIC, the model with only climate-driven variation in

transmission could not capture the overall shape of the surveillance data (Figure 5—figure supple-

ment 5). The basic model, which had neither climate-driven variation in transmission nor an addi-

tional reduction in transmission, could not jointly reproduce both sets of data either (Figure 5—

figure supplement 6). Fitting the basic model to the surveillance data alone, we could reproduce

the observed incidence pattern under the assumption of a simple immunising epidemic. Specifically,

the reported cases were consistent with an epidemic that declined as a result of depletion of the

susceptible population (Figure 5—figure supplement 7). However, this basic epidemic model

Table 4. Estimated age-specific attack rates based on raw ELISA values, and seroconversion using ELISA cutoff.

Estimated proportions of infections were calculated from the total of the probabilities that each individual in that age group had been

infected, based on change in ELISA values between 2013 and 2015 (Figure 2B). Binomial 95% confidence intervals are shown in

parentheses.

Age N Propn infected based on ELISA values Seronegative Seroconverted Seroconverted (%)

0–9 27 39.3% (22.2–59.3%) 21 6 28.6% (11.3–52.2%)

10–19 59 56% (44.1–67.8%) 40 14 35% (20.6–51.7%)

20–29 45 44.7% (31.1–60%) 14 8 57.1% (28.9–82.3%)

30–39 41 38% (24.4–53.7%) 12 4 33.3% (9.92–65.1%)

40–49 28 24.2% (10.7–39.3%) 3 3 100% (29.2–100%)

50–59 28 25.1% (10.7–42.9%) 5 2 40% (5.27–85.3%)

60–69 21 27.8% (9.52–47.6%) 1 1 100% (2.5–100%)

70+ 14 36.6% (14.3–64.3%) 1 0 0% (0–97.5%)

Total 263 39.6% (33.8–45.6%) 97 38 39.2% (29.4–49.6%)

DOI: https://doi.org/10.7554/eLife.34848.009
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underestimated the initial level of immunity and overestimated final immunity. A similar discrepancy

between serological surveys and surveillance data has been noted in previous arbovirus modelling

studies, albeit for ZIKV rather than DENV (Funk et al., 2016; Kucharski et al., 2016;

Champagne et al., 2016).
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Figure 4. Spatial pattern of infection and immunity in Central Division. (A) Relationship between dengue cases

reported by each health centre at the start of the outbreak and Euclidean distance from Colonial War Memorial

Hospital (CWM) in Suva. Area of circle is proportional to number of cases reported in that week; each health

centre is represented by a different colour. (B) Proportion seropositive in each serosurvey study cluster in 2015 vs

Euclidean distance from CWM. Blue, ELISA data; green, MIA data; circles, urban or peri-urban clusters; crosses,

rural clusters. (C) Proportion infected in each serosurvey study cluster vs Euclidean distance from CWM. Blue,

estimate based on ELISA data, using adjustment in Figure 2B; green, seroconversion based on MIA for individuals

who were initially seronegative; circles, urban or peri-urban clusters; crosses, rural clusters.

DOI: https://doi.org/10.7554/eLife.34848.010
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Figure 5. Impact of climate and control measures on DENV transmission during 2013/14, using a model jointly fitted to surveillance and serological

data from Central Division. (A) Model fit to surveillance data. Solid black dots, lab tested dengue cases; black circles, DLI cases; black line, total cases.

Blue line shows median estimate from fitted model; dark blue region, 50% credible interval; light blue region, 95% CrI; red region shows timing of

clean-up campaign. (B) Pre- and post-outbreak DENV immunity. Red dots show observed MIA seroprevalence against DENV-3 in autumn 2013 and

autumn 2015; hollow dots, under 20 age group; solid dots, 20+ age group; lines show 95% binomial confidence interval. Dashed orange line shows

model estimated rise in immunity during 2013/14 in under 20 group; solid line shows rise in 20+ group; shaded region shows 95% CrI. (C) Estimated

variation in transmission over time. Red region, timing of clean-up campaign; green line, relative transmission as a result of control measures. Black line,

basic reproduction number, R0; blue line, effective reproduction number, R, accounting for herd immunity and control measures. Shaded regions show

95% CrIs. Dashed line shows the R ¼ 1 herd immunity threshold. (D) Average monthly rainfall (blue lines) and daily temperature (orange line, with black

line showing weekly moving average) in Fiji during 2013–15. (E) Change in R0 over time. Shaded regions show 95% CrIs.

DOI: https://doi.org/10.7554/eLife.34848.011

The following figure supplements are available for figure 5:

Figure supplement 1. Illustration of model variation in transmission as a result of climate and control.

DOI: https://doi.org/10.7554/eLife.34848.012

Figure supplement 2. Dynamics of DENV transmission during 2013/14, using a model jointly fitted to surveillance and ELISA serological data from

Central Division.

DOI: https://doi.org/10.7554/eLife.34848.013

Figure supplement 3. Posterior parameter estimates for the model with climate and control measures.

DOI: https://doi.org/10.7554/eLife.34848.014

Figure supplement 4. Correlation between posterior distributions of transmission rate parameters.

Figure 5 continued on next page
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Discussion
We analysed surveillance reports and serological survey data to examine the dynamics of a major

2013/14 dengue outbreak in Fiji. Owing to the sporadic and unpredictable nature of dengue out-

breaks in the Pacific (Cao-Lormeau et al., 2014), it is rare to have access to paired population-repre-

sentative sera collected before and after such an epidemic. Comparing surveillance and serological

survey data made it possible to investigate the relationship between observed reported cases and

the true attack rate and quantify the relative role of climate, herd immunity and control measures in

shaping transmission.

Analysis of detailed serological data provided insights into age-specific patterns of infection that

would not be identified from seropositivity thresholds alone. We estimated the highest infection rate

was in the 10–19-year-old age group, whereas proportionally the most reported cases were in the

20–29-year-old group. The apparent disparity between reported cases and infections estimated

from the serological survey may be the result of secondary DENV infections causing more severe

clinical disease and therefore increasing the likelihood of seeking medical care (OhAinle et al.,

2011). The ELISA results suggested that fewer than 50% of individuals under age 20 had experi-

enced DENV infection in 2013 (Figure 3A), which means an infection during the 2013/14 outbreak in

this group was more likely to be primary than secondary. In contrast, the majority of 20–29 year olds

already had evidence of infection in 2013, and hence 2013/14 outbreak would have generated rela-

tively more secondary or tertiary infections in this group. In addition, if age-specific infection rates

are indeed higher in younger groups, it means that estimating population attack rates based on the

proportion of seronegative individuals infected may over-estimate the true extent of infection.

Focusing on the seronegative subset of the population leads to children being over-sampled, which

in our data inflates attack rate estimates by around 10% compared to estimates based on change in

ELISA value (Table 4).

We also found little evidence of spatial heterogeneity in seroconversion. Although the locations

of health centres reporting cases in the early stages of the outbreak suggested infection spread out-

wards from central Suva, we found evidence of DENV infection in all study clusters. This suggests

that spatial structure may be more important in driving transmission dynamics early in the outbreak,

but might not influence the final attack rate. One limitation of this comparison is that we did not

have information on outbreak dynamics in the community: in the surveillance data, we only had the

Figure 5 continued

DOI: https://doi.org/10.7554/eLife.34848.015

Figure supplement 5. Dynamics of DENV transmission during 2013/14, using a model jointly fitted to surveillance and MIA serological data from

Central Division, with only climate-based variation in transmission.

DOI: https://doi.org/10.7554/eLife.34848.016

Figure supplement 6. Dynamics of DENV transmission during 2013/14, using a model jointly fitted to surveillance and MIA serological data from

Central Division, without time-varying transmission.

DOI: https://doi.org/10.7554/eLife.34848.017

Figure supplement 7. Dynamics of DENV transmission during 2013/14, using a model fitted only to surveillance data from Central Division, without

time-varying transmission.

DOI: https://doi.org/10.7554/eLife.34848.018

Table 5. Comparison of model performance using AIC and DIC.

Model Serological data AIC DAIC DIC DDIC

SEIR MIA 716.9 66.69 625.6 35.62

SEIR + climate MIA 672.9 22.7 616.6 26.65

SEIR + climate + control MIA 650.2 0 589.9 0

SEIR ELISA 675.1 25.74 1219 643.2

SEIR + climate ELISA 668.4 19.09 599.3 23.52

SEIR + climate + control ELISA 649.3 0 575.8 0

DOI: https://doi.org/10.7554/eLife.34848.019
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location of the health centres that cases reported to, rather than the location where infection likely

occurred.

Analysis of risk factors suggested that presence of self-reported symptoms between 2013–15 was

associated with DENV infection. There was also a strong association between rise in ELISA value and

self-reported symptoms in individuals who were likely infected, which suggests that raw values from

serological tests could potentially be used to estimate the proportion of a population who were

asymptomatic during a dengue outbreak, even in older age groups that were already seropositive.

However, it is worth noting that the questionnaire that accompanied the serosurvey was brief and

only asked about fever and visits to a doctor with fever; there may be specific factors that can better

predict prior infection in such settings. We also conducted the follow up survey around 18 months

after the outbreak, which means recall bias is a potential limitation of the risk factor analysis. We did

not identify environmental factors that were significantly associated with infection, likely as a result

of the relatively small sample size in the serological survey, but the estimated odds ratios were

broadly consistent with factors that would be expected to increase or decrease infection risk

(Table 3).

To investigate potential explanations for the outbreak decline in early 2014, we fitted a transmis-

sion dynamic model with two human age groups to both surveillance and serological survey data.

Our analysis shows the benefits of combining multiple data sources: with surveillance data alone, it

would not have been possible to distinguish between self-limiting outbreak driven by a decline in

the susceptible population, and one that had ceased for another reason. With the addition of sero-

logical data in the model fitting, however, our model was able to quantify the relative contribution

of herd immunity, climate and control measures to the outbreak dynamics. In particular, this model

suggested that seasonal variation in transmission and herd immunity alone could not explain the fall

in transmission. However, an additional decline in transmission in March 2014, which coincided with

a nationwide vector clean-up campaign, could better capture the observed patterns in serological

and surveillance data.

There are some limitations to our modelling analysis. First, we assumed that seropositivity in IgG

antibody tests was equivalent to protective immunity. High levels of neutralising antibodies have

been shown to correlate with protection from symptomatic infection (Katzelnick et al., 2016), but it

remains unclear precisely how much an individual with a given ELISA or MIA value contributes to

transmission. Second, we focused on seroprevalence against DENV-3 in the main modelling analysis.

As prior infection with one dengue serotype can lead to a cross-reactive immune response against

other serotypes (Guzmán and Kourı́, 2002), we fitted the model to ELISA results (which were not

serotype specific) as a sensitivity analysis; this produced the same overall conclusions about which

model performed best. Third, we used a flexible time-dependent transmission rate to capture a

Table 6. Parameter estimates for the 2013/14 dengue epidemic when the model was fitted to MIA

or ELISA data.

Median estimates are shown, with 95% credible intervals shown in parentheses. Mean R0 is the aver-

age basic reproduction number over a year. Proportion reported was calculated by sampling from

the negative binomial distribution that defines the model observation process (i.e. the credible inter-

val reflects both underreporting and dispersion in weekly case reporting). I0hc and I0ha denote the num-

ber of initially infectious individuals in the younger and older age group respectively.

Parameter MIA ELISA

Mean R0 1.12 (1.02–1.25) 1.49 (1.35–1.69)

Peak R0 1.87 (1.7–2.07) 2.5 (2.29–2.81)

Control reduction 0.57 (0.42–0.82) 0.70 (0.37–0.95)

Proportion reported, lab (%) 11 (1.1–39) 13 (2.6–36)

Proportion reported, DLI (%) 9.3 (0.99–37) 12 (2.8–35)

I0hc 140 (18–550) 0.98 (0.21–3.8)

I0ha 130 (19–680) 1.3 (0.0094–57)

DOI: https://doi.org/10.7554/eLife.34848.020
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potential reduction in transmission as a result of control measures in March 2014. The clean-up cam-

paign included multiple concurrent interventions, which occurred alongside ongoing media coverage

of the outbreak; it was therefore not possible to untangle how specific actions – such as vector habi-

tat removal or changes in community behaviour that reduced chances of being bitten – contributed

to the outbreak decline. Moreover, factors unrelated to control, such as spatial structure or local

weather effects, may also have contributed to the observed decline in transmission; there was heavy

rain and flooding in Viti Levu at the end of February 2014 (ABC News, 2014).

Although we used a simple function to capture the potential impact of rainfall on vector density,

it is unlikely that a more detailed mechanistic relationship would improve the model fit. The peak in

rainfall in 2013/14 coincided with the peak in dengue cases; for rainfall to have strongly influenced

observed transmission via a reduction in larval carrying capacity, it would need to have peaked ear-

lier, to account for the time delays involved in the vector life cycle (Lourenço et al., 2017). We also

assumed that all of the population could potentially be infected in the model. Some of the discrep-

ancy between the high attack rate predicted by a randomly mixing model and lower observed sero-

conversion could in theory be explained by heterogeneity in transmission (Funk et al., 2016), which

would be expected to reduce the overall proportion infected during an outbreak. If such heteroge-

neity exists, it is unlikely to act in an ‘all-or-nothing’ manner over time, with the same individuals

remaining at low risk: the high level of seroprevalence in older age groups suggests that only a small

proportion of individuals have consistently avoided infection (Figure 3).

Finally, our analysis focused on Central Division, Fiji. However, much of the data used in our

model – such as surveillance data, post-outbreak serology, and climate information – would be avail-

able for other settings. For factors that are harder to measure without paired serology, like age-spe-

cific infection rates and potential effectiveness of control measures, a joint inference approach could

be employed that combines prior distributions based on the data presented here with available out-

break data from the other location of interest (Funk et al., 2016).

Despite these caveats, our results show that transmission dynamic models developed using a

combination of serological surveys and surveillance data can be valuable tool for examining dengue

fever outbreaks. As well as providing insights into the transmission and control of dengue, the analy-

sis has implications for forecasting of future epidemics. During February and March 2014, members

of the research team based at London School of Hygiene and Tropical Medicine provided real-time

analysis and outbreak projections for the Fiji National Centre for Communicable Disease Control, to

support public health planning (Nand et al., 2016). However, a lack of serological data at the time

meant it was necessary to make strong assumptions about pre-existing population immunity. With

up-to-date population representative serology now available, forecasting models during future out-

breaks will be able to include a more realistic herd immunity profile from the outset. Such seroepide-

miological approaches could also be employed in other settings, to provide improved forecasts of

dengue transmission dynamics and potential disease burden prior to and during outbreaks, as well

as quantitative retrospective evaluation of the effectiveness of control measures.

Materials and methods

Surveillance data
In December 2013, the dengue outbreak in Fiji was determined to be due to DENV-3 by RT-PCR

performed on serum samples sent to the World Health Organization Collaborating Centre for Arbo-

virus Reference and Research at the Queensland University of Technology (QUT, Brisbane). Hereaf-

ter, samples that were ELISA reactive for NS1 antigen or IgM were presumed to be to DENV-3

infections with a sub-sample of them sent for confirmatory serotyping at QUT, the Institut Louis

Malardé (ILM) and the US Centers for Disease Control and Prevention. Of the 10,442 laboratory

tested cases that were notified to the Fiji National Centre for Communicable Disease Control

between 27th October 2013 and 4th March 2014, 4115 (39.4%) were reactive for DENV NS1 and/or

anti-DENV IgM. After this time period, dengue surveillance was transitioned from laboratory to clini-

cal-based reporting (i.e. dengue-like illness, DLI) due to the size of the outbreak (Figure 6).

Between 27th October 2013 and 31st August 2014, 25,494 suspected cases of dengue (i.e. labo-

ratory tested or confirmed or DLI) were notified to the Fijian Ministry of Health. Of these, 12,413

(48.7%) cases were in Central Division, predominantly in the greater Suva area (Figure 1). 10,679
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cases were reported in the Western Division, 2048 cases were reported in the Northern division,

largely in or near Labasa, the largest town of Vanua Levu island, and 354 cases were reported in the

Eastern Division. For the lab-confirmed cases, date of testing was used to compile weekly case inci-

dence time series; for the DLI data, date of presentation to a health centre was used, as these dates

were most complete. Filter paper-based surveillance conducted by ILM between December 2013

and October 2014 found 24 samples positive for DENV-3 by RT-PCR, as well as three samples posi-

tive for DENV-2 and one for DENV-1. During 2014/15, there was a flare up of DENV-2 in Fiji. How-

ever, relatively few cases occurred on Viti Levu: of the 543 confirmed cases nationally between 1st

January 2015 and 29th April 2015, 437 cases (80%) were from the Northern Division (World Health

Organisation, 2015).
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Figure 6. Geographical distribution of cases reported each week. (A) Lab -tested dengue cases reported in Northern (green), Western (blue) and

Central (yellow) divisions between 27th October 2013 and 31st August 2014. (B) Total tested and confirmed cases in Central division (solid and dashed

lines respectively), as well as proportion of cases that tested positive (grey line). (C) Dengue-like illness (DLI) over time. (D) Total suspected cases (i.e.

tested and DLI).

DOI: https://doi.org/10.7554/eLife.34848.021

The following figure supplements are available for figure 6:

Figure supplement 1. Dates of serological sample collection.

DOI: https://doi.org/10.7554/eLife.34848.022

Figure supplement 2. Distribution of individual-level measured responses in (A) neutralisation assay and (B) MIA.

DOI: https://doi.org/10.7554/eLife.34848.023
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Serological survey
We conducted a serological survey using pre- and post-outbreak sera from 23 communities in Cen-

tral Division. Pre-outbreak sera were collected as part of population representative community-

based surveys of leptospirosis and typhoid conducted in Central Division between September and

November 2013 (Lau et al., 2016; Watson et al., 2017). Population-proportionate sampling was

used to select local nursing zones (the smallest administrative unit). From each of these zones, one

community was randomly selected, followed by 25 households from each community and one indi-

vidual from each of the households. Coincidentally, the sample collection in Central Division finished

the same week as the first dengue cases were reported (Figure 6—figure supplement 1). Post-out-

break sera were collected during a follow-up study carried out in October and November 2015. Field

teams visited participants in Central Division who had previously participated in the 2013 serological

study and had consented to being contacted again for health research.

Participants who gave informed consent for the 2015 study completed a questionnaire and pro-

vided a 5 ml blood sample. The study was powered to measure the rise in prevalence of anti-DENV

antibodies between 2013–15. Historical dengue outbreaks in Fiji (Table 1) suggested we would

expect to see seroconversion in at least 20% of the study population. Allowing for 5% seroreversion,

and 0.05 probability of type-1 error, McNemar’s test suggested 250 paired samples could detect a

15% increase in seroprevalence with 95% power, and a 20% increase with »100% power. We also

collected data on potential risk factors and healthcare-seeking behaviour during this period. The

questionnaire asked for details of fever and related visits to a doctor in the preceding two years, and

the same for household members in the preceding two years. The questionnaire also recorded

details of household environment, including potential mosquito breeding grounds

(Supplementary file 2).

Ethical considerations
The 2013 typhoid and leptospirosis studies and the 2015 follow up study were approved by the Fiji

National Research Ethics Review Committee (ref 2013–03 and 2015.111.C.D) and the London School

of Hygiene and Tropical Medicine Observational Research Ethics Committee (ref 6344 and 10207).

Participants in the 2015 follow up study were people who had previously given informed consent to

have their blood tested as part of a public health serum bank established in the 2013 typhoid and

leptospirosis serosurvey, and agreed to be contacted again by public health researchers. The study

was explained in English or the local iTaukei language by bilingual field officers, at the potential par-

ticipants’ preference. Adults gave written informed consent, or thumbprinted informed consent wit-

nessed by a literate adult independent from the study. For children age 12–17 years, written consent

was obtained from both the parent and the child. For children aged under 12 years, written consent

was obtained from the parent only, though information was provided to both.

Serological testing of paired sera
Paired pre- and post-outbreak serum samples were tested using an indirect IgG ELISA kit (PanBio

Cat No 01PE30), according to manufacturer guidelines. This assay employs recombinant DENV enve-

lope proteins of all four serotypes (McBride et al., 1998). Samples with ELISA value of �9 PanBio

units were defined as seronegative, �11 PanBio units seropositive, and values between 9 and 11 as

equivocal. Seroconversion was defined as a change from seronegative to seropositive status.

Because the indirect IgG ELISA does not distinguish between DENV serotypes, samples were also

tested against each of the four specific DENV serotypes using a recombinant antigen-based micro-

sphere immunoassay (MIA), as previously used to examine seroprevalence against different flavivi-

ruses in French Polynesia (Aubry et al., 2017, 2018). Specifically, we wanted to measure the change

in seropositivity to DENV-3 during the study period. As an additional validation, a subset of fifty

samples from Central Division – including a mixture of those seronegative and seropositive by ELISA

and MIA – were tested for the presence of neutralising antibodies against each of the four DENV

serotypes using a neutralisation assay as previously described (Cao-Lormeau et al., 2016). A neutral-

isation titre of �20 was defined as seropositive (Figure 6—figure supplement 2A). For both MIA

and neutralisation assay results, the largest change in seropositivity was for DENV-3

(Supplementary file 1B). When seropositivity to any DENV (i.e. seropositive to at least one serotype)
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was compared, a similar change was observed across ELISA, MIA and neutralisation assay results

between 2013 and 2015.

Serological modelling
Based on ELISA seropositivity in 2015 alone, it would not be possible to identify infections during

the 2013/14 outbreak among individuals who were initially seropositive in 2013. We therefore exam-

ined the changes in paired individual-level ELISA values between 2013 and 2015. To estimate the

probability that a given increase in ELISA value was the result of a genuine rise rather than measure-

ment error, we fitted a two distribution mixture model to the distribution of changes in value

between 2013 and 2015. We used a normal distribution with mean equal to zero to reflect measure-

ment error, and a gamma distribution to capture a rise that could not be explained by the symmetric

error function. The observed changes in ELISA value we fitted to ranged from �6 to 20; we omitted

two outliers that had a change in value of �9 between 2013 and 2015, as these could not be

explained with a normally distributed measurement error function. It was not possible to perform

the same analysis using the MIA data because unlike the ELISA and neutralisation assay data, the

raw MIA values did not follow a bimodal distribution that indicated likely naive and previously

exposed individuals (Figure 6—figure supplement 2B). We used a generalized additive model with

binomial link function to examine the relationship between ELISA value in 2013 and rise between

2013 and 2015, with data points weighted by probability that the change in ELISA value was the

result of a genuine rise rather than measurement error. Risk factor analysis was performed using a

univariable logistic regression model. Both were implemented using the mgcv package in R version

3.3.1 (Wood, 2006; R Core Team, 2015).

Transmission model
Model structure
We modelled DENV transmission dynamics using an age-structured deterministic compartmental

model for human and vector populations, with transitions between compartments following a sus-

ceptible-exposed-infective-removed (SEIR) structure (Kucharski et al., 2016; Manore et al., 2014;

Pandey et al., 2013). As human population size was known, but the vector population was not, the

human compartments were specified in terms of numbers and vectors in terms of proportions. Upon

exposure to infection, initially susceptible humans (Sh) transitioned to a latent class (Eh), then an

infectious class (Ih) and finally a recovered and immune class (Rh). The mosquito population was

divided into three classes: susceptible (Sv), latent (Ev), and infectious (Iv). Mosquitoes were assumed

to be infectious until they died. We had two human age groups in the model: aged under 20

(denoted with subscript c), and aged 20 and over (denoted with subscript a). We included births and

deaths for the vector population, but omitted human births and deaths because the mean human

lifespan is much longer than the duration of the outbreak. The model was as follows:

dShc=dt¼�bhðtÞShcIv (1)

dEhc=dt¼ bhðtÞShcIv � nhEhc (2)

dIhc=dt¼ nhEhc�gIhc (3)

dRhc=dt¼ gIhc (4)

dSha=dt¼�bhðtÞShaIv (5)

dEha=dt¼ bhðtÞShaIv� nhEha (6)

dIha=dt¼ nhEha�gIha (7)

dRha=dt¼ gIha (8)
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dC=dt¼ nhðEhc þEhaÞ (9)

dSv=dt¼ dðtÞ�bvðtÞSv
Ihcþ Iha

N

� �

� dðtÞSv (10)

dEv=dt¼ bvðtÞSv
Ihcþ Iha

N

� �

� nvðtÞEv � dðtÞEv (11)

dIv=dt¼ nvðtÞEv � dðtÞIv (12)

The compartment C recorded the cumulative total number of human infections, which was used

for model fitting. Based on most recent Fiji census in 2007, we set the population size N to be

342,000 in Central Division (Fiji Bureau of Statistics, 2007), and split this population between the

two age groups based on the populations of each reported in the census (Nc=133,020 and

Na=208,980). We estimated two initial conditions for each human age group: the initial number of

infective individuals, I0h , and the initial number immune, S0h. We assumed that there were the same

number of individuals initially exposed as there are individuals infectious (i.e. E0

h ¼ I0h ). For the vector

population, we only estimated the initial proportion infectious. We assumed that E0

v ¼ I0v and the

remaining proportion of mosquitoes were susceptible. We assumed that the mean intrinsic latent

period, 1=nh, and human infectious period, 1=g remained constant over time, with informative priors

(Table 7). As detailed in the sections below, the following parameters were time dependent: trans-

mission rate from vectors to humans, bhðtÞ; transmission rate from humans to vectors, bvðtÞ; mos-

quito lifespan, 1=dðtÞ; and extrinsic latent period, 1=nvðtÞ. To avoid infection declining to implausibly

Table 7. Parameters fitted in the model.

Prior distributions are given for all parameters, along with source if the prior incorporates a specific mean value. All rates are given in

units of days�1.

Parameter Definition Prior Source

1=nh intrinsic latent period Gamma(�=5.9, s=0.1) (Chan and Johansson, 2012)

1=g human infectious period Gamma(�=5, s=0.1) (Duong et al., 2015)

1=n̂v extrinsic latent period at 25� Gamma(�=10, s=0.1) (Mordecai et al., 2017;
Chan and Johansson, 2012)

1=d̂ mosquito lifespan at 25� Gamma(�=8, s=0.1) (Sheppard et al., 1969)

â biting rate at 25� Gamma(�=0.25, s=0.1) (Mordecai et al., 2017)

m̂ baseline vector density logUð0; 20Þ (Andraud et al., 2012)

K̂ carrying capacity scaling parameter logUð0; 100Þ

a1 gradient of sigmoidal change in transmission logUð0; 1000Þ
a2 magnitude of sigmoidal change in transmission logUð0; 1Þ
a
t

timing of sigmoidal change in transmission logUð8th March 2014, 5th April 2014Þ (Break Dengue, 2014)

rlab proportion of cases reported as lab tested logUð0; 1Þ
rDLI proportion of cases reported as DLI logUð0; 1Þ
� reporting dispersion logUð0;¥Þ
I0hc initial number infectious aged < 20 logUð0;NcÞ

R0

hc
initial number immune aged < 20 logUð0;NcÞ

I0ha initial number infectious aged 20+ logUð0;NaÞ

R0

ha
initial number immune aged 20+ logUð0;NaÞ

I0v initial proportion of infectious mosquitoes logUð0; 1Þ

DOI: https://doi.org/10.7554/eLife.34848.024
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small levels then rising again in the following season, we included potential for extinction in the

model. If the number of individuals in any of the E or I human compartments dropped below one,

the model set the value to zero. Hence if there were no exposed or infectious individuals in either of

the age groups, the epidemic would end.

Seasonal parameter variation
We assumed that the vector-specific parameters varied over time in the model, as a result of sea-

sonal changes in temperature and rainfall (Descloux et al., 2012). During 2013/14 in Central Divi-

sion, average monthly rainfall ranged from around 100 to 400 mm, and daily temperature varied

between 21 and 30�C (The World Bank, 2016; Fiji Meteorological Service, 2017). Temperature

reached its maximum in January/February, and minimum in August/September (Figure 5—figure

supplement 1A). As the daily temperature data were noisy and surveillance data were only available

on a weekly timescale, in the model we defined tempt as the seven day moving average of tempera-

ture on day t (i.e. the average temperature over the preceding week). We also defined raint as the

average rainfall on day t, interpolated from monthly data (Figure 5—figure supplement 1B).

Based on estimated mechanistic relationships between temperature and Aedes aegypti dynamics

(Lourenço et al., 2017; Mordecai et al., 2017), we assumed that the following vector-specific

parameters were temperature dependent: extrinsic incubation period, 1=nvðtÞ; lifespan, 1=dðtÞ; biting
rate, aðtÞ; probability of transmission to a human, pvhðtÞ; and probability of infection from an infec-

tious human, phvðtÞ. We incorporated these temperature-dependent dynamics using symmetric (f)

and asymmetric ( ) unimodal thermal response functions (Mordecai et al., 2017; Briere et al.,

1999):

fðx;y;Tm;T0Þ ¼
minfyðx�T0ÞðTm� xÞ;1g ifT0<x<Tm

0 else

�

(13)

 ðx;y;Tm;T0Þ ¼
minfyxðx�T0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

Tm� x
p

;1g ifT0<x<Tm

0 else

�

(14)

The parameters were defined using the median estimated value from these functions fitted to

empirical data (Mordecai et al., 2017):

1=nvðtÞ ¼ 1=ðn̂vfðtempt;6:11� 10
�5;45:53;10:30Þ=0:10Þ (15)

1=dðtÞ ¼ 1=ðd̂ ðtempt ;9:02;37:66;�0:14Þ=29:00Þ (16)

aðtÞ ¼ âfðtempt ;0:00020;40:04;13:76Þ=0:22 (17)

pvhðtÞ ¼fðtempt;0:00083;35:78;17:23Þ (18)

phvðtÞ ¼fðtempt;0:00049;37:38;12:67Þ (19)

Here 1=nvðtÞ, 1=dðtÞ and aðtÞ are normalised so that they equal 1=n̂v, 1=d̂, and â respectively when

tempt ¼ 25
�C. In the model, most of these parameters varied monotonically within the temperature

range observed in Fiji (Figure 5—figure supplement 1C–G). We used informative priors for the

average extrinsic latent period, 1=n̂v, mosquito lifespan, 1=d̂v, and biting rate, â (Table 7).

We assumed that vector density, mðtÞ, could vary with both temperature and rainfall (Figure 5—

figure supplement 1H–I). The contribution of vector density to transmission was influenced by four

factors (Mordecai et al., 2017): fecundity, f (i.e. number of eggs produced per female mosquito per

day); egg-to-adult survival probability, e, the mosquito development rate, d, and the larval carrying

capacity K. In the model, vector density over time was equal to:
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mðtÞ ¼mðtempt; raintÞ (20)

¼ m̂

m0

eðtÞf ðtÞdðtÞ KðtÞ
1þKðtÞ (21)

where m̂
m0

is a scaling term and the K=ð1þKÞ term incorporating carrying capacity follows from the

equilibrium solution of the logistic growth model (Pearl and Reed, 1920) (Figure 5—figure supple-

ment 1I). We assumed that d, e, and f were temperature dependent, based on functions fitted to

empirical data (Mordecai et al., 2017), and K was linearly dependent on rainfall:

dðtÞ ¼fðtempt ;7:84e� 10
�5;39:10;11:56Þ (22)

eðtÞ ¼  ðtempt;13:58;38:29;�0:0060Þ (23)

f ðtÞ ¼fðtempt;0:0082;34:44;14:78Þ (24)

KðtÞ ¼ K̂raint=222:44 (25)

KðtÞ was normalised so its mean value over the year was equal to K̂ and we set m0 ¼ 0:5752381 so

that mðtÞ ¼ m̂K=ð1þKÞ when the temperature was 25�. Prior distributions for parameter values are

given in Table 7. In the absence of control measures, the vector-to-human, bh, and human-to-vector,

bv, transmission rates were therefore:

bvðtÞ ¼ aðtÞpvhðtÞ (26)

bhðtÞ ¼ aðtÞphvðtÞmðtÞ (27)

Control measures
To capture the potential additional reduction in transmission over time as a result of the national

clean-up campaign between 8th and 22nd March 2014, we used a flexible sigmoid function:

�ðtÞ ¼ 1� a2

1þ e�a1ðt�a
t

Þ

� �

(28)

We constrained this function so that the midpoint, a
t

, was between the start date of the cam-

paign, 8th March 2014, and 5th April 2014, four weeks later (Figure 5—figure supplement 1J). We

assumed that this function acted to reduce the vector-to-human transmission rate:

bhðtÞ ¼ aðtÞmðtÞ�ðtÞ (29)

There were multiple concurrent interventions during the clean-up campaign, including promotion

of awareness about protection from bites as well as larval habitat removal. Given the structure of the

data available, it would not be possible to independently estimate the extent to which the campaign

directly reduced vector-to-human transmission, that is �ðtÞ acting on aðtÞ, rather than vector density,

that is �ðtÞ acting on mðtÞ. However, if there had been a substantial effect on larval habitat capacity

but not on biting rate, we may expect to infer a larger value of a
t

, to reflect the delay in impact as a

result of the time required for vector development.

Effective reproduction number
The next generation matrix for humans and vectors was defined as follows (Manore et al., 2014,

2017):

Rhh Rhv

Rvh Rvv

� �

¼
0

bhðShcþShaÞnv
dðdþnvÞN

bvSv
g

0

 !

and the effective reproduction number, R, was equal to the dominant eigenvalue of this matrix. The
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basic reproduction, R0, was calculated by the same method, but assuming that both humans and

vectors were fully susceptible.

Model fitting
The model was jointly fitted to laboratory-confirmed case data and serological data using Markov

chain Monte Carlo (MCMC) via a Metropolis-Hastings algorithm. For the case data, we considered

time units of one week. To construct a likelihood for the observed cases, we defined case count for

week t as ct ¼ Ct � Ct�1.

Because reporting switched from lab tested to DLI during the outbreak, we jointly fitted two sets

of time series data. The first dataset was lab tested cases. We defined the first observation as 4th

November 2013, the week of the first confirmed case in Central Division, and the last observation as

26th May. The second dataset was DLI cases, which we fitted from 1st February until 26th May. Ear-

lier DLI cases were not included as these were likely to reflect reporting artefacts rather than genuine

infections. The two time series we fitted were disjoint: cases were either reported as lab tested or

DLI.

We assumed that the two set of observed cases followed a negative binomial distributions with

mean qtrlabct and ð1� qtÞrDLIct respectively, and a shared dispersion parameter �, to account for

potential temporal variability in reporting (Bretó et al., 2009). We used a negative binomial distribu-

tion to allow for both under- or over-reporting, the latter being potentially relevant in the final

stages of the outbreak when case numbers were low. Here qt denotes the proportion of cases in

week t that are lab tested rather than reported as DLI. As it was not possible to fit this value for each

week, it was fixed in the model as qt ¼ ylab=ðylabðtÞ þ yDLIðtÞÞ, where ylabðtÞ and yDLIðtÞ are the number

of observed lab tested and DLI cases in week t respectively. The total expected number of reported

cases in week t was therefore equal to ðqtrlab þ ð1� qtÞrDLIÞct.
As well as fitting to surveillance data, we fitted the model to the proportion of each age group

immune (as measured by seroprevalence) at the start and end of the outbreak. Let Xij be a binomi-

ally distributed random variable with size equal to the sample size in group i and probability equal

to the model predicted immunity in year j, and zij be the observed seroprevalence in group i in year

j. The overall log-likelihood for parameter set � given case data Y ¼ fytgTt¼1
and serological data Z ¼

fzijgi2f1;2g;j2f2013;2015g was therefore:

Lð�~ j~Y ;ZÞ ¼
X

t

logPðytjctÞþ
X

2

i¼1

X

j2f2013;2015g
logPðXij ¼ zijÞ (30)

We considered four model scenarios: an SEIR model without climate-driven variation or control,

fitted to surveillance data only; SEIR model without climate-driven variation or control, fitted to sur-

veillance and serological data; SEIR model with climate-driven variation only, fitted to surveillance

and serological data; SEIR model with climate-driven variation and control, fitted to surveillance and

serological data. We fitted the model to either MIA or ELISA data, to reflect two different assump-

tions about the relationship between seroprevalence and immunity. The model using MIA data

made the assumption that only individuals who were seropositive to DENV-3 were immune to this

serotype. As a sensitivity analysis, the model using ELISA data assumed that seropositivity to any

DENV serotype indicated immunity to DENV-3.

All observations were given equal weight in the model fitting. The joint posterior distribution of

the parameter set � was obtained from 200,000 MCMC iterations, each with a burn-in period of

20,000 iterations. We used adaptive MCMC to improve efficiency of mixing: we iteratively adjusted

the magnitude of the covariance matrix used to resample � to obtain a target acceptance rate of

0.234 (Roberts and Rosenthal, 2009). Posterior estimates for MIA and ELISA data are shown in

Supplementary files 1C–D. The statistical and mathematical models were implemented in R version

3.3.1 (R Core Team, 2015) using the deSolve package (Soetaert et al., 2010) and parallelised using

the doMC library (Revolution Analytics, 2014).

Model comparison
We compared the performance of different models using the deviance information criterion (DIC),

which accounts for the trade off between model fit and complexity (Spiegelhalter et al., 2002). The
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deviance of a model for a given parameter set, �, is given by Dð�Þ ¼ �2Lð�jY ; ZÞ. The DIC is

therefore:

DIC¼Dð��ÞþvarðDð�ÞÞ (31)

where �� is the median of � with respect to the posterior distribution and varðDð�ÞÞ=2 is the effective

number of parameters. The median of � as used rather than mean because the likelihood was non-

log-concave in �, which meant that the posterior mean was a poor estimator (Spiegelhalter et al.,

2002). As an additional validation, we compared models using the Akaike information criterion

(AIC), which accounts for the trade off between model fit and complexity (Akaike, 1973). The AIC of

a model for a given parameter set, �, is given by AIC¼�2L̂ð�Þþ 2nparam where L̂ð�Þ is the maximised

value of the likelihood and nparam is the number of parameters.

Data availability
Serological, surveillance and climate data are provided in Supplementary file 3. Code and data

required to reproduce the main serological and modelling analysis are available at: https://github.

com/adamkucharski/fiji-denv3-2014. Copy archived at https://github.com/elifesciences-publica-

tions//fiji-denv3-2014.

Acknowledgements
We warmly thank all the participants and community leaders who generously contributed to the

study. We are also grateful to Kylie Jenkins of Australian Aid’s Fiji Health Sector Support Pro-

gramme, Teheipuaura Mariteragi-Helle at the Institut Louis Malardé, and Dr Ketan Christie at the
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Stéphane Hué, Martin L Hibberd, Conceptualization, Formal analysis, Writing—review and editing

Author ORCIDs

Adam J Kucharski http://orcid.org/0000-0001-8814-9421

Sebastian Funk http://orcid.org/0000-0002-2842-3406

Jean-Claude Manuguerra http://orcid.org/0000-0002-5202-6531

Eric James Nilles http://orcid.org/0000-0001-7044-5257

Ethics

Human subjects: The 2013 typhoid and leptospirosis studies and the 2015 follow-up study were

approved by the Fiji National Research Ethics Review Committee (ref 2013-03 and 2015.111.C.D)

and the London School of Hygiene and Tropical Medicine Observational Research Ethics Committee

(ref 6344 and 10207). Participants in the 2015 follow-up study were people who had previously given

informed consent to have their blood tested as part of a public health serum bank established in the

2013 typhoid and leptospirosis serosurvey, and agreed to be contacted again by public health

researchers. The study was explained in English or the local iTaukei language by bilingual field offi-

cers, at the potential participants’ preference. Adults gave written informed consent, or thumb-

printed informed consent witnessed by a literate adult independent from the study. For children

aged 12–17 years, written consent was obtained from both the parent and the child. For children

aged under 12 years, written consent was obtained from the parent only, though information was

provided to both.

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.34848.029

Author response https://doi.org/10.7554/eLife.34848.030

Additional files
Supplementary files
. Supplementary file 1. Supplementary data and results tables.

DOI: https://doi.org/10.7554/eLife.34848.025

. Supplementary file 2. Questionnaire that accompanied the 2015 serological survey in Central

Division.

Kucharski et al. eLife 2018;7:e34848. DOI: https://doi.org/10.7554/eLife.34848 22 of 26

Research article Epidemiology and Global Health Microbiology and Infectious Disease

http://orcid.org/0000-0001-8814-9421
http://orcid.org/0000-0002-2842-3406
http://orcid.org/0000-0002-5202-6531
http://orcid.org/0000-0001-7044-5257
https://doi.org/10.7554/eLife.34848.029
https://doi.org/10.7554/eLife.34848.030
https://doi.org/10.7554/eLife.34848.025
https://doi.org/10.7554/eLife.34848


DOI: https://doi.org/10.7554/eLife.34848.026

. Supplementary file 3. Serological, surveillance and climate data for the 2013/14 DENV-3 outbreak

in Central Division.

DOI: https://doi.org/10.7554/eLife.34848.027

Data availability

Surveillance and serological data are provided as supporting information. Full code and data

required to reproduce the main serological and modelling analyses are available at: https://github.

com/adamkucharski/fiji-denv3-2014. The raw GPS data cannot be made publicly available as this

contains potentially identifiable information.

References
ABC News. 2014. Fiji hit by heavy rains and flooding as tropical depression approaches country. http://www.abc.
net.au/news/2014-02-28/an-fiji-bracing-for-possible-cyclone-on-the-weekend/5289686 [Accessed 25 September
2014].

Akaike H. 1973. Information theory and an extension of the maximum likelihood principle. In: Selected Papers of
Hirotugu Akaike. Springer. p. 199–213.

Andraud M, Hens N, Marais C, Beutels P. 2012. Dynamic epidemiological models for dengue transmission: a
systematic review of structural approaches. PLoS One 7:e49085. DOI: https://doi.org/10.1371/journal.pone.
0049085, PMID: 23139836

Aubry M, Finke J, Teissier A, Roche C, Broult J, Paulous S, Desprès P, Cao-Lormeau VM, Musso D. 2015.
Seroprevalence of arboviruses among blood donors in French Polynesia, 2011-2013. International Journal of
Infectious Diseases 41:11–12. DOI: https://doi.org/10.1016/j.ijid.2015.10.005, PMID: 26482390

Aubry M, Teissier A, Huart M, Merceron S, Vanhomwegen J, Mapotoeke M, Mariteragi-Helle T, Roche C, Vial
AL, Teururai S, Sicard S, Paulous S, Desprès P, Manuguerra JC, Mallet HP, Imrie A, Musso D, Deparis X, Cao-
Lormeau VM. 2018. Seroprevalence of dengue and Chikungunya virus antibodies, french Polynesia, 2014-2015.
Emerging Infectious Diseases 24:558–561. DOI: https://doi.org/10.3201/eid2403.171149, PMID: 29460745

Aubry M, Teissier A, Huart M, Merceron S, Vanhomwegen J, Roche C, Vial AL, Teururai S, Sicard S, Paulous S,
Desprès P, Manuguerra JC, Mallet HP, Musso D, Deparis X, Cao-Lormeau VM. 2017. Zika virus seroprevalence,
french Polynesia, 2014-2015. Emerging Infectious Diseases 23:669–672. DOI: https://doi.org/10.3201/eid2304.
161549, PMID: 28084987

Bowman LR, Donegan S, McCall PJ. 2016. Is dengue vector control deficient in effectiveness or evidence?:
systematic review and Meta-analysis. PLOS Neglected Tropical Diseases 10:e0004551. DOI: https://doi.org/10.
1371/journal.pntd.0004551, PMID: 26986468

Break Dengue. 2014. How efforts in Fiji stopped dengue in its tracks. https://www.breakdengue.org/how-efforts-
in-fiji-stopped-dengue [Accessed 25 September 2014].
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