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The relative fitness of drug-resistant versus susceptible bacteria in an environ-

ment dictates resistance prevalence. Estimates for the relative fitness of

resistant Mycobacterium tuberculosis (Mtb) strains are highly heterogeneous

and mostly derived from in vitro experiments. Measuring fitness in the field

allows us to determine how the environment influences the spread of resist-

ance. We designed a household structured, stochastic mathematical model

to estimate the fitness costs associated with multidrug resistance (MDR)

carriage in Mtb in Lima, Peru during 2010–2013. By fitting the model to

data from a large prospective cohort study of TB disease in household contacts,

we estimated the fitness, relative to susceptible strains with a fitness of 1, of

MDR-Mtb to be 0.32 (95% credible interval: 0.15–0.62) or 0.38 (0.24–0.61), if

only transmission or progression to disease, respectively, was affected. The

relative fitness of MDR-Mtb increased to 0.56 (0.42–0.72) when the fitness

cost influenced both transmission and progression to disease equally. We

found the average relative fitness of MDR-Mtb circulating within households

in Lima, Peru during 2010–2013 to be significantly lower than concurrent

susceptible Mtb. If these fitness levels do not change, then existing TB control

programmes are likely to keep MDR-TB prevalence at current levels in

Lima, Peru.
1. Background
Mycobacterium tuberculosis (Mtb) is a highly prevalent bacterium, thought to

infect just under a quarter of the world’s population [1]. Treatment of tubercu-

losis (TB) disease is not simple and drug-susceptible tuberculosis (DS-TB)

requires a multiple-drug regimen taken for at least six months [2]. Multidrug-

resistant tuberculosis (MDR-TB) treatment regimens are significantly longer,

cause serious side effects and are very expensive [3]. While currently 5% of

all TB cases globally are estimated to be MDR-TB [2], predicting the future

burden of DS- and MDR-TB is essential for TB control programmes.

One key parameter that determines the future prevalence of drug-resistant

TB is the relative fitness of drug-resistant Mtb strains when compared with

drug-susceptible Mtb strains [4–7]. Fitness is a complex, environment-dependent

trait that can be defined as the ability of a pathogen to survive, reproduce, be
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Table 1. Fitted parameters with description, prior distributions, any differences by model structure and data used for fitting. All parameters are fitted to the TB
incidence date from the household (HH) study [17]. The three models have different assumptions around the effect of decreased fitness, with f varying to be f1

(affects transmission rate) or f2 (affects progression to disease rate) (figure 1).

symbol parameter description
prior
distribution Model 1 Model 2 Model 3 data

fois external force of infection of DS-TB uniform

[0; 0:5]

/ DS-TB incidence in

MDR-TB index HH:

4264 [3916, 4338]

foir external force of infection of

MDR-TB

uniform

[0, 0:3]

/ MDR-TB incidence in

DS-TB index HH:

87 [13, 435]

f (f1, f2) relative fitness of MDR-TB strains

compared to DS-TB strains,

which have a fitness of 1

uniform

[0, 1]

0 , f1 , 1

f2 ¼ 1

f1 ¼ 1

0 , f2 , 1

f1 ¼ f2

0 , f1 , 1

MDR-TB incidence in

MDR-TB index HH:

2112 [1646, 2358]

bs per capita transmission rate of

DS-TB within households

uniform

[90, 140]

/ DS-TB incidence in

DS-TB index HH:

4264 [3916, 4338]

br per capita transmission rate of

MDR-TB within households

calculated from other fitted parameters: br ¼ f1bs
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transmitted and cause secondary cases of disease. These abil-

ities are affected by multiple environmental factors such as a

host’s genetics, the current TB treatment regimen and other

risk factors for transmission, which are all time-varying. The

importance of this parameter has been highlighted by several

mathematical models which show how even small changes

in its value can predict widely varying future levels of MDR-

TB burden [4–6,8,9]. Thus, gaining environment-dependent,

accurate estimates of fitness is of critical importance.

Within Mtb, it has been shown that the appearance of drug

resistance (MDR) mutations affects fitness [10–12]. These pre-

vious studies have shown that resistant Mtb is, usually, less

fit than susceptible Mtb under a range of fitness definitions:

either by demonstrating a lower growth rate in vitro (e.g.

[13]), less progression to disease after inoculation in guinea

pigs (e.g. [14]) or a lower chance of causing secondary cases

of disease (e.g. [12,15]). The latter definition is important for

epidemiological predictions of burden, while the first provides

the potential underlying biological cause. The epidemiological

fitness of an Mtb strain can be split into an ability to (1) cause

secondary infections (transmission) and (2) cause subsequent

active disease (progression). For example, resistant Mtb may

be transmitted equally, but subsequent disease rates in those

infected may be lower or less severe. For Mtb this split is

especially pertinent due to the importance of the latent,

non-infectious stage of disease.

Also highly important for Mtb is the spatial location of trans-

mission [16]. Few studies have considered the critical influence

of household structure on transmission of Mtb. To our knowl-

edge, no studies have considered the spread of drug-resistant

tuberculosis in the context of a household-structured stochastic

mathematical model.

The difference in definitions of fitness and corresponding

experimental data makes translation from data analysis to pre-

dictive mathematical modelling difficult. Here, we tackle this

problem by fitting a mathematical model to a detailed dataset

on the transmission of Mtb strains collected in a large cohort
study of households undertaken in Lima, Peru between 2010

and 2013 [17]. We derive estimates of fitness in this specific

setting with different fitness definitions (either effects on trans-

mission and/or progression to disease) and test the robustness

of these estimates under a range of assumptions. These par-

ameters will allow for better predictions of future MDR-TB

levels and an improved understanding of MDR-TB spread.
2. Material and methods
2.1. Data
The details of the underlying study and participants can be found

in [17]. Briefly, 213 and 487 households were recruited with an

index case of diagnosed MDR- or DS-TB, respectively, during

2010–2013. Households were followed up for variable periods of

time up to a maximum of 3 years (electronic supplementary

material, figure S1). During the study households were visited

every six months, and household contacts were monitored for

TB disease. It was found that 35/1055 (3.32%, 95% CI [2.32,

0.4.58]), of the MDR-TB contacts, and 114/2356 (4.84%, 95% CI

[4.01, 5.78]), of the DS-TB contacts developed TB disease,

suggesting that DS-TB has higher fitness. There were no significant

differences between cohorts by HIV status, age, gender or house-

hold size [17].

The specific data used to calibrate the model were (i) the inci-

dence of MDR-TB and (ii) DS-TB in households with an index

DS-TB case and (iii) the incidence of MDR-TB and (iv) DS-TB

in households with an index MDR-TB case (table 1). The percen-

tages of incident cases with resistance profiles matching the

index was used to multiply the incidence levels accordingly.

2.2. Model structure
The mathematical model was a standard two-strain dynamic TB

model (figure 1), with transmission modelled at the level of

the household. A Gillespie stochastic simulation algorithm in

R [18] was developed using the R package ‘GillespieSSA’ [19].

Using a stochastic transmission model was important as the

http://rsif.royalsocietypublishing.org/
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susceptible resistant

transmission
(primary reinfection (slow )fast

progression/reactivation
)
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f2pf
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AR
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fois + bs/h f1bs/h + foir
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Figure 1. A standard natural history, transmission model for two strains (susceptible and resistant) of Mtb was used (diagram on the left). Uninfected people
become infected at a rate dependent on the number of active cases (dynamic transmission). Once infected, the majority of people (85%) are assumed to
enter a latent slow (LS/LR) state. The remainder enter a rapid progression (latent fast, LFS/LFR) state which has a higher rate of progression to active disease
(AS/AR). Resistance mutations are acquired during active disease. Those with active disease recover to the latent slow state via treatment or natural cure. The fitness
cost to resistance is assumed to affect the rate of transmission ( f1) or the rate at which those latently infected with MDR-TB progress to active disease ( f2). Only the
effect on primary transmission of f1 is highlighted here, but reinfection is also affected. f1 and f2 are set at 1 or allowed to vary between 0 and 1 in the three
separate models: f1 in Model 1, f2 in Model 2, and both f1 and f2 in Model 3. The four estimated parameters (shown in the diagram on the right) were rates of
internal transmission (bs, f ) and the external forces of infection (fois, foir). (Online version in colour.)
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model was implemented independently in households where the

small populations mean stochastic effects are highly important.

The size of the household varied, with household size sample

from data on the distribution in the original household cohort

study [17]. We assumed that saturation of transmission could

occur and hence scaled our transmission rate by the size of the

household (number of people), assuming households have the

same ventilation level (or at least that this did not vary by index

case Mtb resistance status) and within-household homogeneous

mixing [20]. This assumption of frequency-dependent trans-

mission means that, in households with more people, household

members are assumed to have lower individual chance of infec-

tion from an active disease case than in smaller households,

due to decreased exposure. This has been observed for another

airborne pathogen, influenza [21] and was explored in sensi-

tivity analysis where we also considered density-dependent

transmission. All natural history parameters were taken from

the literature and are listed in table 2, and the dynamics

explained in the legend to figure 1.

Four parameters were estimated from the data (table 1 and

figure 1): (1) the per capita transmission rate of DS-TB within

households (bs), (2) the relative fitness of MDR-Mtb strains

versus DS-Mtb strains (f ) expressed as an effect on transmission

or progression or both, and the external (to households) force of

infection (foi) of (3) DS-TB fois and (4) MDR-TB foir.

Our main outcome was the impact of resistance on transmission

rates, but we also explored the impact on an approximate effective

reproduction number (see the electronic supplementary material).
2.3. Three model formulations
Resistant strains were allowed to have an equal or lower fitness

relative to susceptible strains. The mechanisms behind this

reduction were estimated to affect two different rates: the trans-

mission rate, the rate of progression to disease, or both (figure 1).

We assumed that the fitness of the resistant strains could not rise
above that of susceptible strains due to the data from the house-

hold cohort [17]. Model 1 (transmission fitness cost model)

assumed that fitness costs directly affected the number of second-

ary infections by reducing the transmission parameter for

MDR-Mtb (0 , f1 , 1, f2 ¼ 1, figure 1). This is the standard

assumption for the effect of resistance on fitness for transmission

dynamic models of Mtb [6,9,38] and other pathogens [39]. Model

2 (progression fitness cost model) assumed that although MDR-

TB transmission occurred at the same rate as DS-TB, there is a

fitness cost to progression to disease (f1 ¼ 1, 0 , f2 , 1, figure 1).

Model 3 assumed that there was a fitness cost to both transmission

and progression, and that the cost was the same for both processes

(0 , f1 ¼ f2 , 1, figure 1). We could not explore a model with fit-

ness affecting both processes at differing levels as we did not

have data on levels of infection. Without these data, a model

with high transmission fitness cost but low progression cost

would be equally as likely as a model with a low transmission

fitness cost but a high progression cost and hence would be unin-

formative. Note that fixing either f1 or f2 equal to one is the same as

ignoring this parameter altogether and leaving the multiplied rate

at its background level as they are both scalar constant parameters

with no units.
2.4. Model simulation
The model initially sampled 700 household sizes (with replace-

ment) from the exact distribution of household sizes in the trial

[22]. Initial numbers of people with latent infection were sampled

from a normal distribution generated by data from the literature

[2,40] (see the electronic supplementary material). The model

was then simulated for 10 years with an MCMC sampled set of

the four unknown parameters (pre-study period), capturing trans-

mission within the household prior to enrolment in the household

study. A random time point from this 10-year period in which

there was at least one active case with the same sensitivity as the

initial case in the household (i.e. DS-TB or MDR-TB) was taken

http://rsif.royalsocietypublishing.org/


Table 2. Parameter values with description and baseline values. All prior distributions were uniform.

symbol parameter description
baseline
value

prior
distribution notes and references

Nr number of households with MDR-TB index case 213 / [22]

Ns number of households with DS-TB index case 487 / [22]

h household size 2 – 15 / [17]

p proportion of (re-)infected individuals who

progress to the ‘latent fast’ state

0.15 0.08 – 0.25 [23 – 25]

x protection from developing active TB upon

reinfection

0.35 0.25 – 0.45 [23,26 – 29]

f rate of reactivation among those latently

infected per year

1.13 � 1024 1 – 3�1024 [23,26,27,29 – 31]

1 probability of acquiring new drug resistance during

treatment

0.008 0.005 – 0.01 [32]

d proportion of new active cases which directly

become infectious

0.5 0.25 – 0.75 [23,29,33,34]

m background death rate 1/77 ¼ 0.013 0.012 – 0.014 inverse of average life expectancy

in Peru [35]

mA additional death rate of those actively infected and

infectious per year

0.26 0.2 – 0.4 [23]

N annual rate of natural cure for TB cases

(returns to latent state)

0.2 0.15 – 0.25 [23]

vs proportion of DS-TB active cases detected and

treated per year

0.8; 2 0.5 – 0.95 for 2012 [2] for pre-study; in study:

screen every 6 months

vr proportion of MDR-TB active cases detected and

treated per year

0.64; 2 0.2 – 0.9 79% of the above 80% (vs) found that

received DST in 2012 [36]; in study:

screen every 6 months

(1 – ks) proportion of DS-TB active cases started on

treatment that are successfully cured

0.74 0.5 – 0.9 [36,37] (for midpoint of study)

(1 – kr) proportion of MDR-TB active cases started on

treatment that are successfully cured

0.6 0.2 – 0.9 for 2012 [2]

pf progression rate of latent fast individuals

to active disease

0.2 0.1 – 0.9 duration of fast latency period of

5 years [27]
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to be the time the household entered the study and the active index

case was detected. This allows for simulation of changes in latency

in the household and provides initial conditions dependent upon

each parameter sample.

The above randomly chosen time point of entry to the study

was taken to be the initial conditions for the simulation of the

model that was fitted to the household study [17] (study period).

The same values of the four unknown parameters were used as

in the pre-study period and the simulation time for each household

was randomly sampled (with replacement) from the exact distri-

bution of follow-up times in the study (electronic supplementary

material, figure S1). The only parameter that changed, to match

the altered patient care in the study, was the case detection rate

which increased for the study period from the WHO estimates to

a screen occurring every six months (table 2).

The TB incidence from the model was calculated by deter-

mining the total number of new cases of active TB in all 700

households over the follow-up time, and dividing this by the

total number of follow-up years in these households. The total

number of follow-up years was a product of the number of
household members and the follow-up time for the household,

taking into account any deaths over this time. We assumed

that none left the households other than by death (natural or

due to TB). Time with active disease was included in the

follow-up. For a detailed overview of the process see electronic

supplementary material, figure S2.

2.5. Model fitting
Approximate Bayesian computation (ABC) was paired with

Markov chain Monte Carlo (MCMC) methods to estimate the

four unknown parameters [41]. All other parameters were kept

fixed at their baseline value (table 2). The summary statistic

used was the TB incidence from the model falling within the

95% CI for all four TB incidence measures from the data. Uniform

priors were assumed for all four parameters (table 1).

To estimate the standard deviation required for the MCMC for

the four unknown parameters, Latin hypercube sampling (LHS)

from the prior ranges was initially used (Stage A, electronic sup-

plementary material). The empirical standard deviation from

http://rsif.royalsocietypublishing.org/
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the accepted fits was then used as the proposal distribution of a

Metropolis–Hastings MCMC sampler (Stage B), used to estimate

posterior probabilities of the parameters.

We used the generated trajectories to consider the probability

of remaining free of tuberculosis from the model output and

compared the trends to the data (fig. 2 from [17]).

2.6. Scenario analysis
A scenario analysis was used to explore the sensitivity of

Model 1 results to key natural history parameters. Firstly, we

changed the initial proportion of the population latently

infected with MDR-Mtb from 2% to 10%.

A full sensitivity analysis of the parameters kept fixed in the

model fits was not possible due to limitations imposed by compu-

tation time. Instead, to determine which further scenarios to

explore, we determined the parameters most correlated with TB

incidence in our model, and hence likely to have the biggest

impact on our model fit and parameter estimates. To determine

these parameters, we used LHS to choose 10 000 parameter sets

from (uniform) prior distributions for all parameters (table 2).

We then ran Model 1 with these 10 000 parameter sets and

determined the parameters that were statistically significantly corre-

lated with any of the four TB incidence outputs (Kendall correlation,

p , 0.01). These parameters were then used to design two scen-

arios—one with a combination of these parameters at their prior

values which gave highest TB incidence and the combination

which gave the lowest TB incidence.

We also increased our 10-year initial run-in period for the popu-

lation to 30 years and explored the impact on the estimates.

Furthermore, we explored removing the assumption of saturating

household transmission (per capita transmission rate was then not

dependent on household size, i.e. density-dependent transmission).

All code is available online [42].
3. Results
3.1. Fit to the data
Model structures 1–3 could all replicate the data from the

household study (figure 2). The MCMC trace and density

plots of the posterior distributions are shown in the electronic

supplementary material.
3.2. Parameter estimates
The estimates of the external foi for DS- and MDR-TB were

similar across the three models (table 3 and figure 3). The per
capita transmission rate of DS-TB within households was also

similar across the three models. The relative fitness of MDR-

Mtb was similar for Model 1 and 2, but increased in Model 3,

as might be expected as in this third model the reduction in fit-

ness is applied to two rates. For Model 1, that is assuming a

resistance phenotype affects transmission, the relative fitness

of MDR-Mtb was estimated to be 0.32 (median, 95% CI:

0.15–0.62) versus DS-Mtb with a fitness of 1. In Model 2,

where a resistance phenotype affected disease progression, a

similar relative fitness was estimated: 0.38 (0.24–0.61). If both

rates were affected, then the relative fitness of MDR-Mtb was

estimated to be 0.56 (0.42–0.72) (table 3 and figure 3).

Comparing the external foi for DS- versus MDR-TB,

we found that the ratio of the two was around 0.5 (median

estimate 0.45/0.58/0.68 from the three models). This single

value for the external foi represents a complex set of pro-

cesses (contact patterns, length of infectiousness etc.) and

hence cannot be used to determine relative fitness. However,

the ratio is in the range that supports our estimates of the rela-

tive fitness from the internal household model. The ratio of an

approximate effective reproduction number for MDR- and

DS-TB also supported our main results (see the electronic

supplementary material).

3.3. Probability of remaining free from tuberculosis
We explored the probability of remaining free from tuberculo-

sis as was presented from the original study (fig. 2 in [17]).

By comparison we had highly similar dynamics to the study

(see electronic supplementary material, figure S5).

3.4. Scenario analysis
Our five scenarios gave very similar estimates for the relative fit-

ness of MDR-Mtb (a range of medians from 0.27–0.34;

electronic supplementary material). This suggests that the esti-

mates of relative fitness are robust to: increasing the initial

proportion of households that were initially infected with

http://rsif.royalsocietypublishing.org/
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Table 3. Parameter estimates for the median and 95% credible intervals of the four unknown parameters from 50 000 MCMC iterations with a burn-in of
10 000 iterations. The fitness cost to resistance is assumed to affect transmission in Model 1, progression to active disease in Model 2, and both transmission
and progression in Model 3.

Model fois foir b F

1 0.22 (0.03 – 0.49) 0.10 (0.01 – 0.26) 74.70 (54.80 – 97.60) 0.32 (0.15 – 0.62)

2 0.26 (0.05 – 0.48) 0.15 (0.01 – 0.29) 75.08 (56.85 – 96.30) 0.38 (0.24 – 0.61)

3 0.22 (0.05 – 0.46) 0.15 (0.01 – 0.29) 76.45 (58.60 – 95.42) 0.56 (0.42 – 0.72)
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latent MDR-Mtb from 2% to 10% (in the pre-study), setting TB

incidence to high or low levels (see the electronic supplemen-

tary material for parameter details), extending the initial

run-in period from 10 to 30 years; or removing the saturation

of transmission within households.
4. Discussion
Our results suggest that the average relative fitness of

MDR-Mtb strains circulating in households in Lima, Peru in

2010–2013 was substantially lower than that of drug-susceptible

strains (approx. 40–70% reduction). When a resistance

phenotype was assumed to affect both transmission and pro-

gression to disease rates, then the relative fitness of MDR-TB

strains was approximately 60%.

The strengths of this study are that we were able to fit a

stochastic household-level model to detailed location-specific

data, accounting for accurate distributions of both household

size and study follow-up time. We were also able to differen-

tiate between internal and external transmission, matching

the resistance typing data from the household study [17].

Moreover, our transmission rate estimates account for the

longer infectiousness of MDR-TB cases (due to delays in

diagnosis and treatment initiation etc.). This model and its

MCMC fitting algorithm can be applied to other settings

and then used as the basis for predictions of future levels of

DS- and MDR-TB. In particular, this novel way of estimating

fitness costs, by fitting dynamic transmission models to
resistance-specific incidence data could be used for other

TB-prevalent settings or for other bacteria. Furthermore, the

estimates given can be directly translated into dynamic trans-

mission models for prediction while previous estimates,

for example, of differences in growth rates have less clear

epidemiological translations.

Our modelling analysis is limited by the assumption of

homogeneity of both hosts and strains. The characteristics

of the DS- and MDR-TB contacts under consideration in the

underlying household study were highly similar [17]. Thus,

as our estimate is of a relative fitness, we believe that includ-

ing host differences in our model may have had little effect on

our relative results. Strain heterogeneities, however, mean

that our result is (potentially) an average across many differ-

ent drug-resistant strains. It is known that differences in

resistance and compensatory mutation combinations result

in a diversity in fitness across strains [13]. This diversity is

highly important for predictions of MDR-TB levels in the

future [43]. Our estimate must therefore be taken as a popu-

lation average in Lima, at a certain time and indicative of the

mean fitness rather than an indicator of the range of potential

fitness in the population. If one highly fit MDR-TB strain

were to emerge (or were already present), then future preva-

lence predictions based on our (mean) estimate could be an

underestimate. We fitted the model to data with confidence

intervals that were derived without fully accounting for the

dependency of infection between household members.

Improving methods for robust approximation of parameters

http://rsif.royalsocietypublishing.org/


rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180025

7

 on August 24, 2018http://rsif.royalsocietypublishing.org/Downloaded from 
from mechanistic models that take full account of such

dependencies is an important active area of research [44],

and will improve future studies of this kind.

Our Model 1, where a transmission effect is assumed, is

the most similar to previous models of MDR-TB transmission

[6,9,38]. Reductions in transmission could arise from many

factors including differences in location of infection (pulmon-

ary versus non-pulmonary), a different interaction with the

basic immune system or different aerosolization levels. How-

ever, our MDR-TB fitness predictions are at the lower end of

the range seen previously [10]. This may reflect the situation

in Peru where there is a strong tuberculosis control infrastruc-

ture with a well-developed MDR-TB treatment programme

and a growing economy. These two factors may have com-

bined to limit the spread of MDR-TB and hence prevent the

adaptation of MDR-TB to a higher fitness. At the bacterial

level, compensatory fitness mutations that could influence

the ability of drug-resistant Mtb strains to spread may not

have emerged or not been allowed to spread. Calibrating the

model to other settings would help clarify this issue. Alterna-

tively, it may be that our estimates are providing, for the first

time, a better direct translation of fitness from epidemiological

data to a transmission model parametrization.

There is a paucity of evidence for whether differences in TB

disease prevalence in general are due to infection or pro-

gression to disease [45]. In particular, for resistant strains it is

unclear where the effect of becoming resistant should be

applied in the natural history of tuberculosis infection. Both

Snider and Teixeira [46,47] demonstrated similar levels of

tuberculin skin test (TST) conversion among MDR- and

DS-TB household contacts but lower levels of disease in con-

tacts of those with MDR-TB. This was also seen in a recent

study in children [48], while a higher prevalence of TST positiv-

ity was found in household contacts of MDR-TB patients than

contacts of newly diagnosed TB patients in Viet Nam [49]. This

evidence combines to suggest that the fitness cost to resistance,

if any, was to be observed on the progression to disease. We

make this assumption in our Model 2, where the hypothesis

is that those with active TB disease, whether due to resistant

or susceptible bacteria, have a similar bacterial load and

hence ability to transmit successfully. However, once success-

fully established in a new host, resistant bacteria may be less

able to combat the immune system and establish a disease

state. This has been assumed in a previous model of HIV and

MDR-TB interaction [50].

Previous models have assumed that resistant strains

could become more fit (i.e. have a relative fitness greater

than 1), while we capped the relative fitness of the resistant

strains at 1, due to the data from previous studies and the lit-

erature [13,51]. Our posterior parameter distributions for the

estimated relative fitness parameter (reflected in the 95% CI
for f; see the electronic supplementary material) suggest

that this is a valid assumption for the resistant strains circu-

lating at this time in Lima. Importantly, all our estimates are

of ‘relative’ fitness, and therefore should be robust to changes

in natural history assumptions as these would affect both

drug-susceptible and -resistant strain transmission.

Future work will include adding details on host and strain

heterogeneity to the model. Data collection of strain heterogen-

eity along with active contact tracing and an understanding of

where and from whom transmission occurs would drastically

improve our understanding of fitness and hence improve esti-

mates of future MDR-TB levels. Exploring the external

infection methods and potential changes in this foi over time

(i.e. making it dynamic as in [52]) would allow for models

that can predict levels of MDR-TB in Lima. Future predictive

transmission modelling using our relative fitness estimates

are likely to suggest that if treatment objectives are maintained

and this fitness measure remains constant, MDR-TB prevalence

will remain under control in Lima in the short term.

In conclusion, we find the fitness cost of MDR in Mtb in

Lima, Peru to be substantial. Importantly, this paper provides

direct transmission model estimates, using a novel method, of

the relative fitness levels of drug-resistant Mtb strains. If these

fitness levels do not change, then the existing TB control pro-

grammes are likely to keep MDR-TB prevalence at their

current levels in Lima, Peru. These estimates now need to

be gained for Mtb in other settings and the values used in

models to explore future global burden.
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