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Abstract 
 
Eradication and elimination are increasingly a part of the global health agenda.  Once control 
measures have driven infection to low levels, the ecology of disease may change posing 
challenges for eradication efforts. These challenges vary from identifying pockets of 
susceptibles, improving monitoring during and after the endgame, to quantifying the 
economics of disease eradication versus sustained control, all of which are shaped and 
influenced by processes of loss of immunity, susceptible build-up, emergence of resistance, 
population heterogeneities and non-compliance with control measures. Here we discuss 
how modelling can be used to address these challenges. 
 
Keywords: elimination; surveillance; modelling; dynamics 
 
 
Introduction 
 
Only two diseases, smallpox and rinderpest, have been eradicated. Yet eradication is 
increasingly part of the language of the global health community. Calls have been made for 
the eradication of diseases as diverse as guinea worm and malaria. While each disease poses 
a unique set of issues, there are a number of recurring challenges that emerge during the 
endgame, or the phase during which control efforts are intensified and targeted towards 
achieving elimination locally and eradication globally (see Figure 1 for a visualization of 
different control stages towards elimination).  
 
[Figure 1 around here.] 
 
In order to be successful, eradication effort has to permanently eliminate a pathogen 
everywhere in the world; pathogen prevalence is globally reduced to zero, thereby removing 
the risk of re-introduction and re-establishment. Elimination, on the other hand, is a more 
localized effort that focuses on reduction to zero incidence of a certain pathogen in a given 
area, with active measures to prevent pathogen re-establishment from other areas after 
elimination. Since eradication is elimination on global scale, there are many similarities 
between those two efforts, particularly in dynamical transitions from endemic transmission 
to elimination and post-elimination period of enhanced vigilance (see Figure 1). Once 
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infection is driven to very low levels, the ecology of pathogens may change requiring 
different surveillance and control strategies. Susceptible build-up, waning of immunity, 
increase in the age of infection, non-compliance of individuals with control measures, 
pathogen change and emergence of resistance as a result of intensified efforts all become 
increasingly important during the final stages of eradication programmes. This calls for the 
development of a research agenda for epidemiological modelers that directly addresses 
these challenges, from the design of models to target control strategies, to the optimization 
of surveillance and determining data needs to address, amongst others, the questions we 
outline below.  
 
In addition to visualizing stages of elimination and corresponding reduction in disease 
prevalence and change in dynamical regime, Figure 1 also serves as a timeline of eradication 
efforts that we use to structure the rest of this manuscript.  Before eradication efforts are 
attempted, is there a way to estimate how likely are they to succeed and how much they are 
going to cost compared to sustained control? Is there a way to quantify the susceptible 
landscape that will improve targeting of efforts and monitoring strategies in the pre-
elimination and elimination phase?   
 
 
Challenge 1.  Provide a systematic framework for when we should try to eradicate  
 
Eradication of infectious diseases is a vast public health, political and economic commitment 
and the intensity of efforts needed to eliminate a disease cannot be sustained indefinitely. 
The costs and risks are high, as are the potential benefits. During the dynamic transition 
from endemic transmission to local elimination (Figure 1) potential shifts in age at first 
infection, waning of immunity, susceptible build-up, emergence of resistance, etc. can lead 
to dynamical feedbacks and logistical challenges that can cause unanticipated difficulties for 
eradication.  For emerging infections, modelling pathogen properties demonstrated how 
timing of infectiousness and appearance of symptoms determines the likely success of 
isolating infectious individuals and their contacts in controlling an outbreak [1]. An 
analogous framework that can identify what makes a disease “easy” vs. “hard” to eradicate 
would be a first step in providing a mechanism of prioritizing efforts and strategies.   
 
Such a framework needs to include processes that shape infectious disease dynamics but 
that operate on very different time scales. For example, intensive efforts exert strong 
selective pressures on the pathogen and prolonging the elimination phase (Figure 1) 
increases the probability of emergence of anti-microbial or insecticide resistance, vaccine 
escape or antigenic divergence, potentially creating novel problems. While the evolutionary 
timescales over which drugs fail due to resistance are affected by application strategies or 
drug regimens, replenishment of susceptible populations and ageing of “naturally 
immunised” cohorts occur on demographic time-scales determined by turnover, which 
varies drastically across populations. Models can help identify key-time scales for 
eradication, how they vary for different pathogens, and how long can intensified elimination 
efforts be sustained, without detrimental consequences.  
 
Biological feasibility of eradication depends, among other factors, on the pathogen lifecycle, 
its reservoirs, persistence in the environment, clinical manifestations of disease, sensitivity 
and specificity of laboratory tests to confirm the disease as well as safe and effective control 
measures. A related biological factor is the presence of related pathogens that might take 
advantage of a niche vacated by eradication [2]. Although crucial, biological factors are not 
the only prerequisites –logistic, operational, political and socioeconomic factors are all 
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critical in determining whether or not eradication can be achieved and should be 
incorporated into models.  

 
Challenge 2. Develop quantitative models of the economics of control versus eradication 
 
Cost-effectiveness of control methods is increasingly a deciding factor in their 
implementation [3,4].  The reasons for this are fairly intuitive, as it is rational not to attempt 
something unless the benefits of that action exceed the costs.  Yet it can be difficult to 
accurately estimate costs of control efforts and their benefits when eradication is one of 
several options. Should we aim for long-term control, tolerating a certain level of infection, 
or should we push for eradication?  When is one option preferable and what kind of models 
do we need to help distinguish between the two?  
 
Analysis of costs is hard even retrospectively, but estimating these costs in advance is even 
more challenging. There are several reasons for this.  First, costs of expanding control efforts 
increase; for example, the last foci of infection, or pockets of susceptibility will be those that 
are hardest to reach, either geographically or socially (e.g. vaccine refusers). The challenge 
for modelling is to accurately tie the economics of scaling up control programmes with the 
epidemiology and changing ecology of the disease [5]. Second, control efforts are 
implemented within health systems very differently from eradication efforts.  Control 
programs are usually integrated in horizontal programmes focused on strengthening primary 
care and providing ‘health for all’[6]. Elimination and eradication efforts on the other hand 
often require a targeted ‘vertical approach’, sometimes at the expense of other public 
health issues.  But elimination efforts can also strengthen primary healthcare by providing 
basic services and improving surveillance (yaws), training personnel and expanding 
immunisation programmes (smallpox), or establishing a global laboratory network (polio) [7].  
The impacts on health systems of such secondary or intangible benefits of elimination 
programs are particularly hard to measure [8], posing a challenge of how to integrate them 
into models.  
 
Expansion of efforts is very costly and prolonging the endgame leads to donor fatigue risking 
re-emergence if efforts are scaled-down prematurely.  Prolonged low incidence levels during 
the epidemic tail (as illustrated by the low number of cases in the elimination phase in 
Figure 1) can also lead to disengagement of communities with eradication efforts, 
complacency and ‘individual fatigue’ or even active refusal of vaccination [9]. In addition, a 
prolonged epidemic tail may contribute to seeding outbreaks elsewhere [10], escalating the 
costs and jeopardising chances of success. 
 
For many diseases, the probability of severe complications and the costs of treatment vary 
with patient age. Population ageing will therefore also affect the costs of control and 
elimination programmes.  The impacts of changing demography might be more costly for 
sustained, long-term control efforts than for intense, but time-limited eradication 
programmes which might be a new argument for eradication.  Models that consider 
epidemic, economic and demographic detail on an appropriate time-scale will help answer 
these questions. Estimates of disease burden that incorporate dynamical effects of control 
efforts (e.g. [11]) provide a promising avenue for quantifying these costs and benefits. 
 
Finally, in some circumstances, projected costs may suggest that eradication is not feasible. 
Given that some of the benefits of eradication are difficult or impossible to express in 
monetary terms (e.g. improving the vaccine supply chain may enable easier and cheaper 
distribution of future antigens; possible non-linear interactions with other pathogens), 
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financial reasoning and cost-effectiveness may not be the only reasoning to guide 
elimination efforts [12]. Can modelling approaches offer alternatives that take us beyond 
cost-effectiveness? Developing consistent metrics of health benefits would make it easier to 
measure total direct and indirect benefits of implemented efforts and improve economic 
evaluations used to inform public health decisions.  

 
Challenge 3. Identify the most effective approaches to achieve eradication  
 

The dynamics of infectious diseases close to elimination can be distinctly different from 
natural dynamics (Figure 1). The distribution of susceptibility is no longer governed by a 
combination of replenishment of the susceptible population through births, and immunity 
through past exposure but, instead, by vaccination coverage, the extent of mass drug 
administrations (in the case of many campaigns against NTDs [13]) or behavioural changes 
(e.g. guinea worm that is on track to be eliminated without the use of drug or vaccine 
[14,15]). These interventions introduce an element of heterogeneity, which can affect 
infection dynamics. If those susceptible (e.g., unvaccinated) are preferentially in contact 
with each other because of geographical and/or social proximity, there is a risk of large 
outbreaks, which can be hard to predict because introductions into those populations might 
be rare.  
 
Models need to be designed to take into account these dynamical transitions and predict 
where and when outbreaks are at most risk of occurring, as well as suggest appropriate 
prevention and intervention strategies. Using outbreak data from England and Wales, 
Jansen and colleagues [16] showed that while measles transmission in the UK remained 
subcritical (locally eliminated with short-lived outbreaks from imported infections) the 
reproductive number, R, significantly increased in the wake of declining vaccination 
coverage, suggesting that continued low vaccine uptake could lead to re-establishment of 
endemic measles. Similar branching process models may have utility for identifying pivotal 
dynamics during the endgame. Additionally, endgame dynamics should be reconsidered in 
the light of a heterogeneous landscape of susceptibility and stochastic fade-outs to inform 
how much control is needed to drive an infection to extinction and, consequently, how to 
best allocate the resources in eradication efforts.   
 
Approaches during the endgame often differ from sustained, less intense control during the 
‘middle game’ (Figure 1).  The smallpox effort switched from mass vaccination campaigns to 
repetitive active searches conducted by a massive army of health personnel going door-to-
door to look for any last remaining cases. Modeling work and statistical inference from polio 
surveillance data identified the value of switching to a more immunologically effective 
monovalent vaccine [17] prompting a substantial investment in vaccine development. India 
was recently certified free from polio, resulting from this switch [18]. Using models to assess 
the limitations of conventional control measures in the face of shifting dynamics, and 
identifying strategies that increase the probability of eliminating infection, such as the 
optimal time to intensify efforts or switch strategies, could reduce the length of the 
epidemic tail (such as in polio). 
 
Challenge 4. Quantify the landscape of susceptibility 

 
For immunizing (or partially-immunizing) infections, the age, location and social grouping of 
individuals that remain susceptible as incidence declines to low levels, will be the key 
determinant of progress towards elimination. The main data-stream available for evaluating 
this landscape of susceptibility is often surveillance for cases or deaths - susceptibility itself 
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is generally a hidden variable. For completely immunizing infections, susceptible 
reconstruction can provide some insight into the dynamics of immunity – but inference is 
weakened specifically where the risk of infection is low (i.e., in an elimination context), since 
the assumption that everyone can acquire the infection no longer holds.  
 
Expanding the statistical and modelling toolset available for inferring the temporal, 
geographic, or social patterns of susceptibility is a key challenge in using modelling to 
support elimination or eradication efforts. This effort will likely include development of 
models that can synthesise diverse sources of information encompassing serological surveys, 
coverage estimates, and demographic rates among others. Quantitative descriptions of past 
dynamics of the population via these variables will inform the likely current proportion of 
susceptible individuals, their ages, and geographic locations. The history of outbreaks will be 
an important piece in this puzzle – a large outbreak or campaign could deplete susceptibles 
such that a long interval without infection (‘honey-moon period’ [19]) results; and can be 
followed by a large, late age outbreak (observed during the recent measles outbreak in 
Swansea [20]). 
 
Amongst these various data-streams, serological surveys supply perhaps the most direct 
measure of susceptibility. Nevertheless, there are considerable open challenges in the 
analyses of serological data. For many infections, vaccine and natural immunity cannot 
currently be distinguished. Ideally, clinical measures of serology could be improved to allow 
this, but in the absence of such progress, models that build around other known variables 
(past outbreak sizes, coverage estimates, etc.) may be able to generate inference to 
distinguish vaccine coverage from natural immunity. This will allow detection of whether the 
disease is still circulating in certain populations or spilling over from nearby reservoirs 
(crucial for diseases such as rinderpest and FMD where premature cessation of vaccination 
can lead to costly resurgence).  More generally, much of the data collected as part of a 
serological survey is often jettisoned in analyses – in particular, continuous titres are 
translated into discrete positive / negative variables. Data on the continuum of titre values 
might be leveraged to infer levels, or recency of exposure via models that incorporate 
epidemiological data.  
 
As we address increasingly complex pathogens, which may fluctuate in their characteristics 
over time, space and severity of infections (e.g. malaria, where low immunity is linked to 
more severe infections [21]) such modelling innovations that yield deeper insight into the 
biology may be key. Furthermore, they may contribute to identifying if and when pathogen 
escape from chemotherapy or vaccination is occurring. Finally, a challenge is developing 
models capable of forecasting the likely consequences if an elimination program were to fail 
(for example, [22]).  
 
Challenge 5. Improve monitoring during and after the endgame 
 
Once a disease is close to elimination locally, the few remaining cases may be concentrated 
in hard-to-reach groups, for social, logistical or geographic reasons; may be predominantly 
asymptomatic cases; and may be temporally very irregular. Following elimination, new 
outbreaks may develop rapidly and be detected through clusters of severe cases, or may 
develop more slowly and be detected though serological studies. As immunity shifts in the 
population following elimination, the age-distribution or characteristics of cases may also 
shift. The question of how to design the right surveillance strategy to assist the drive 
towards elimination, to confirm that elimination has been achieved and to assist in 
preventing re-emergence all require a detailed understanding of the characteristics of the 
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disease and its dynamics (see [23]). A classic problem in elimination and re-emergence is 
that passive surveillance may only capture the ‘tip of the iceberg’ - normally the 
symptomatic cases or those that are laboratory confirmed [24]. Responses based on only 
these cases may be delayed relative to the outbreak. Either new diagnostics are needed to 
identify and treat asymptomatic cases (e.g. visceral leishmaniasis [25]), or responses need to 
take into account the likely pool of infectives around an identified case (the ratio of 
infections to reported cases). If the dynamics of the disease are such that there are hotspots 
of infection, this may make a spatial response a very effective tool.   
 
In addition to the challenge of designing the right surveillance method epidemiologically, 
there are challenges around interpreting existing surveillance data, or designing new 
surveillance strategies that are logistically feasible. This includes not only monitoring of 
disease, but also of control processes, such as drug distribution, bed net usage (rather than 
distribution) and systematic uptake or refusal of vaccines (e.g. [26]). 
 
A further complication in designing surveillance is accounting for spatial coupling (e.g. [27]) 
and interconnectedness of areas at different stages of elimination. For example, as part of a 
feasibility study of malaria elimination in Zanzibar, mobile phone movement data suggested 
that travel from mainland Tanzania was so intense that local controls alone would be 
unlikely to eliminate malaria due to high rates of importation [28].  
  
Challenge 6. Identify post-eradication opportunities and threats  

 
Finally, in the event of successful elimination/eradication how long do we need to hold the 
line?  Should one invest in maintaining herd immunity, or implement low-level indefinite 
control, or stop with the efforts altogether (as with smallpox)?  If we were to scale down or 
stop control efforts, when would it be safe to do so (see [24])? Should we switch to a 
different strategy and, if so, when? What are the spatial strategies for maintaining freedom 
from disease? What defines the width of a protective cordon sanitaire and how should 
elimination efforts be coordinated across international boundaries? 
 
Models that estimate or account for spatial coupling could guide spatial strategies, to 
minimize re-introductions from endemic areas (through coordinated efforts) and maintain 
disease freedom (through for example the design of cordon sanitaires). Finally, models 
should be able to provide guidance on whether eradication has been achieved, by informing 
estimates of the proportion of cases detected for a given surveillance program [24]. 
 
Detection of low-level infection requires ever more sensitive and more accurate detection 
methods, so surveillance abilities are crucial in post-eradication strategies. Measuring loss of 
herd immunity or finding asymptomatic carriers might require new surveillance and 
monitoring techniques and better statistical tools in analysis of the relevant data. All of 
these need to be considered in a dynamical framework to predict possible shifts in 
dynamical regimes or potential tipping points for re-emergence of eliminated pathogens or 
emergence of related ones through competitive release in vacated niches [2].    

 
Conclusions 
 
Eradication initiatives require sustained public health, political, financial and individual 
efforts.  It is a dynamical challenge that requires vast data integration over temporal, 
geographical and socioeconomic scales. Yet the inherently dynamic nature of infectious 
diseases can also have unexpected advantages. Even though the malaria eradication 
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programme in the 1950s failed, a number of successful countries have remained malaria 
free [29]. Models demonstrated malaria elimination to be a surprisingly stable state [29], 
indicating that elimination could be incrementally achieved without needing the 
simultaneous and correspondingly expensive effort as required for say polio. The eradication 
endgame poses a diverse set of challenges that can be addressed in a modelling framework 
leading to improved surveillance and control. 
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Figures 
 

 
Figure 1. Stages towards and after elimination in a given location and milestones on the path to 
elimination. Adapted from [24,30]. Shading illustrates control intensity (darker gray for heightened 
efforts). 

 


