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BACKGROUND: Despite many notable suc-
cesses in prevention and control, infectious
diseases remain an enormous threat to human
and animal health. The ecological and evolu-
tionary dynamics of pathogens play out on a
wide range of interconnected temporal, orga-
nizational, and spatial scales that span hours
tomonths, cells to ecosystems, and local to glob-
al spread. Some pathogens are directly trans-
mitted between individuals of a single species,
whereas others circulate amongmultiple hosts,
need arthropod vectors, or persist in environ-
mental reservoirs. Many factors, including
increasing antimicrobial resistance, humancon-
nectivity, population growth, urbanization, en-
vironmental and land-use change, as well as
changing human behavior, present global chal-

lenges for prevention and control. Faced with
this complexity, mathematical models offer
valuable tools for understanding epidemio-
logical patterns and for developing and eval-
uating evidence for decision-making in global
health.

ADVANCES: During the past 50 years, the
study of infectious disease dynamics has ma-
tured into a rich interdisciplinary field at the
intersection ofmathematics, epidemiology, ecol-
ogy, evolutionary biology, immunology, sociol-
ogy, and public health. The practical challenges
range from establishing appropriate data col-
lection to managing increasingly large volumes
of information. The theoretical challenges re-
quire fundamental study of many-layered, non-

linear systems in which infections evolve and
spread and where key events can be governed
by unpredictable pathogen biology or human
behavior. In this Review, we start with an ex-
amination of real-time outbreak response
using the West African Ebola epidemic as an
example. Here, the challenges range from un-

derreporting of cases and
deaths, andmissing infor-
mation on the impact of
controlmeasures tounder-
standinghumanresponses.
The possibility of future
zoonoses tests our ability

to detect anomalous outbreaks and to esti-
mate human-to-human transmissibility against
a backdrop of ongoing zoonotic spillover while
also assessing the risk of more dangerous
strains evolving. Increased understanding of
the dynamics of infections in food webs and
ecosystems where host and nonhost species
interact is key. Simultaneous multispecies
infections are increasingly recognized as a
notable public health burden, yet our under-
standing of how different species of pathogens
interact within hosts is rudimentary. Patho-
gen genomics has become an essential tool for
drawing inferences about evolution and trans-
mission and, here but also in general, hetero-
geneity is the major challenge. Methods that
depart from simplistic assumptions about ran-
dommixing are yielding new insights into the
dynamics of transmission and control. There
is rapid growth in estimation of model param-
eters from mismatched or incomplete data,
and in contrasting model output with real-
world observations. New data streams on so-
cial connectivity and behavior are being used,
and combining data collected from very dif-
ferent sources and scales presents important
challenges.
All these mathematical endeavors have the

potential to feed into public health policy and,
indeed, an increasingly wide range of models
is being used to support infectious disease
control, elimination, and eradication efforts.

OUTLOOK: Mathematical modeling has the
potential to probe the apparently intractable
complexity of infectious disease dynamics. Cou-
pled to continuous dialogue between decision-
makers and the multidisciplinary infectious
disease community, and by drawing on new
data streams, mathematical models can lay
baremechanisms of transmission and indicate
new approaches to prevention and control that
help to shape national and international pub-
lic health policy.▪
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Modeling for public health. Policy questions define the model’s purpose. Initial model design is
based on current scientific understanding and the available relevant data. Model validation and fit to
disease data may require further adaptation; sensitivity and uncertainty analysis can point to
requirements for collection of additional specific data.Cycles ofmodel testing and analysis thus lead
to policy advice and improved scientific understanding.
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Despite some notable successes in the control of infectious diseases, transmissible
pathogens still pose an enormous threat to human and animal health. The ecological and
evolutionary dynamics of infections play out on a wide range of interconnected temporal,
organizational, and spatial scales, which span hours to months, cells to ecosystems,
and local to global spread. Moreover, some pathogens are directly transmitted between
individuals of a single species, whereas others circulate among multiple hosts, need
arthropod vectors, or can survive in environmental reservoirs. Many factors, including
increasing antimicrobial resistance, increased human connectivity and changeable human
behavior, elevate prevention and control from matters of national policy to international
challenge. In the face of this complexity, mathematical models offer valuable tools for
synthesizing information to understand epidemiological patterns, and for developing
quantitative evidence for decision-making in global health.

T
hirty-five years ago, it was believed that
the health burden of infectious diseases
was close to becoming insignificant as hy-
giene, improved nutrition, drugs, and vac-
cines brought about a steady decline in

overall mortality (1). In recent decades, however,
it has become clear that the threat from serious
infectious diseases will persist, and human mor-
tality attributed to infection is projected to re-
main at current levels of 13 to 15 million deaths
annually until at least 2030 (2). Successes in
eradicating smallpox and rinderpest have been
isolated events in a landscape of endemic and
epidemic infections (3). Newly emerging infec-
tious agents represent a continuing challenge—for
example, HIV in the 20th century; more recently,
severe acute respiratory syndrome (SARS) and
Middle Eastern respiratory syndrome (MERS)
coronaviruses; West Nile Virus; Nipah virus; drug-
resistant pathogens; novel influenza A strains;
and a major Ebola virus outbreak in 2014–2015.
Most new infections enter the human popula-
tion from wildlife or livestock, and the possibil-
ities for emergence and spread in the coming
decades are likely to increase as a result of pop-
ulation growth, increased urbanization and land
changes, greater travel, and increased livestock
production to meet demands from the world’s
expanding population (4–8). In our modern world
of instant communication, the changing behav-
ior of individuals in response to publicity about
epidemics can have profound effects on the course

of an outbreak (9, 10). Phylogenetic data shed
light on an additional layer of complexity (11), as
will increased understanding of the human ge-
nome in relation to susceptibility, infectiousness,
and its duration. At the same time, the develop-
ment of effective new vaccines remains a difficult
challenge, especially for antigenically very varia-
ble pathogens (e.g., HIV or falciparum malaria)
and for pathogens that stimulate immunity that
is only partly protective (e.g., Mycobacterium tu-
berculosis) or temporary (e.g., Vibrio cholerae).
In the face of this complexity, computational

tools (Box 1) are essential for synthesizing in-
formation to understand epidemiological patterns
and for developing and weighing the evidence
base for decision-making. Here, we review the con-
tribution of these tools to our understanding of
infectious disease dynamics for public health by
using representative examples and by ranging into
current developments. We argue that to improve
decision-making for human health and for sus-
taining the health of our food systems, experts
on infectious disease dynamics and experts on
prevention and control need to collaborate on a
global scale. To succeed, quantitative analysis
needs to lie at the heart of public health policy
formulation.

Models and public health
policy formulation

The value of mathematical models to investi-
gate public health policy questions was recog-

nized at least 250 years ago when, in 1766, Daniel
Bernoulli published a mathematical analysis of
the benefits of smallpox inoculation (then called
variolation) (12). In the past 50 years, the study
of infectious disease dynamics has grown into a
rich interdisciplinary field. For example, decision-
making for vaccination strategies increasingly
depends on model analyses in which infection
dynamics are combined with cost data (Box 2,
Influenza: prevention and control). In recent
decades, responses to major infectious disease
outbreaks, including HIV, bovine spongiform
encephalopathy (BSE), foot-and-mouth disease
(FMD), SARS, and pandemic and avian influ-
enza, have shown both the need for and capa-
bilities of models (Box 3, HIV: Test and treat
strategy). Model-based analysis of such outbreaks
also continually brings improvements in meth-
odology and data, emerging from the compari-
son of model prediction with observed patterns.
For infectious agents important to public health,

a series of principles has emerged for modeling
infection dynamics (Table 1 and Box 4). The basic
reproduction number R0, for example, is a central
concept characterizing the average number of
secondary cases generated by one primary case
in a susceptible population. This concept high-
lights what must be measured to interpret observed
disease patterns and to quantify the impact of
selected control strategies (Fig. 1).
Two fundamental properties of the world that

shape infectious disease dynamics make com-
putational tools key for understanding reality.
The world is essentially a stochastic and highly
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nonlinear system. The nonlinearity derives not
only from the complex interaction between fac-
tors involved in transmission, but also from the
influence that the infection process has on the
distribution of important characteristics at vari-
ous temporal and spatial scales. This effect is
seen in the age-related nature of infection and
mortality in HIV changing the age distribution
of the population, and in previous exposure to
strains of influenza altering the distribution of
influenza susceptibility. Such feedback mecha-
nisms contribute to the nonlinearity of infection
processes. Nonlinearity also leads to counter-
intuitive phenomena (Fig. 2) and prevents simple
extrapolation of experience from one situation to
another, such as when deciding whether to im-
plement a vaccination policy in different coun-
tries (Fig. 1). Mathematical tools, relating to data
and processes on a large range of interacting scales,
have become essential to explore, anticipate, un-
derstand, and predict the effects of feedbacks
within such complex systems, including changes
caused by intervention.

Current and future opportunities for
models in public health

Over the past decade, key public health ques-
tions, ranging from emergence to elimination,
have posed a range of challenges for modeling
infectious disease dynamics, many of which rely
on leveraging disparate data sources and inte-
grating data from a range of scales from ge-
nomics to global circulation. Given commonalities
in processes across pathogens, progress made
in one area can lead to advances in another.
Progress in the areas described above all build
on and inform each other, making this a dy-
namic time for research in the discipline (13).
A few themes are chosen to illustrate current
trends in model development and public health
application.

Real-time outbreak modeling:
The Ebola 2014–2015 outbreak

The 2014–2015 outbreak of Ebola in West Africa
serves to highlight both opportunities and chal-
lenges in modeling for public health. In the ini-
tial phase of this outbreak, real-time estimates
of the reproduction number or simple exponen-
tial extrapolation (14) allowed short-term predic-
tions of epidemic growth that were used, for
example, to plan for necessary bed capacity.
Quantitative phylogenetic tools applied to sam-
ples from initial victims provided important es-
timates of the origin of the outbreak (15). Early
mechanistic models that explicitly took into ac-
count the roles played by different transmission
routes or settings were informed by analysis of
earlier outbreaks (16, 17). When the failure to
contain the epidemic with methods successful in
previous outbreaks led to a scale-up of capacity
driven by international aid, such models were
used to assess the impact of, for example, reduc-
ing transmission at funerals (17) and whether
the construction of novel types of treatment cen-
ters could end up doing more harm than good.
Ensuring that the most effective combinations

of interventions were implemented required close
and fast interaction between modelers and policy-
makers (18). Looking forward, models are now
used to help clinical trial design and inform a
debate on the optimal deployment of initially
scarce Ebola vaccines, once such vaccines be-
come available.
With the opportunities of real-time modeling

for public health come specific challenges. The
imperative to produce reliable and meaningful
analysis for those treating infected people has to
be balanced against the pressures and delays of
scientific publication. In an ongoing outbreak,
data can be patchy and reporting delayed, and
different data sources are not always synthe-
sized. When the Ebola outbreak expanded ex-
plosively in the summer of 2014, data were often
lacking on the effect on transmission dynamics
of the various control measures that operated
simultaneously in the hectic circumstances of
the most severely hit areas. In any emerging
epidemic, underreporting is a critical challenge
for ongoing assessment of this epidemic and
has had enormous impact on predictions of out-
break size, but also of outbreak impact—for ex-
ample, in terms of the case-fatality ratio (the
proportion of cases that lead to death). Early in
any outbreak, this estimate of severity can suffer
from imprecise information on both the numer-
ator (if not all deaths due to the infection are
identified as such; for example, because health

services are overwhelmed caring for the sick)
and the denominator (if cases are not reported
or, conversely, noncases get reported as cases if
they are not laboratory-confirmed). This caused
problems early in the H1N1 influenza outbreak
first reported in in Mexico in 2009, as well as in
the current Ebola outbreak. Although level of
underreporting can be estimated from retro-
spective serological studies, it is usually not
identifiable in real-time data.
These limitations make it almost impossible

to make reliable long-term predictions. Thus,
modeling results are often based on scenarios in
which a pathogen spreads unaltered by behav-
ioral changes or the public health response. This
rarely reflects reality, especially in such a devas-
tating outbreak as Ebola, where the situation
constantly changes owing to growing awareness
in the community, as well as national and inter-
national intervention. Careful communication of
findings is key, and data and methods of analysis
(including code) must be made freely available
to the wider research community. Only in this
way can reproducibility of analyses and an open
exchange of methods and results be ensured
for maximal transparency and benefit to public
health.

Emergence of novel human pathogens

There is an ever-present hazard that novel hu-
man pathogens emerge from livestock and wild
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Box 1. Quantitative tools in infectious disease dynamics.

Here, we use the words “computational tools” loosely. In infectious disease dynamics, there is a
broad range of relevant quantitative tools, and we refer to the entire collection. It comprises
statistical methods for inference directly from data, including methods to analyze sequencing and
other genetic data. This leads to estimates of important epidemiological information such as
length of latency, incubation and infectious periods and their statistical distributions, inferred
transmission chains and trees early in outbreaks, the risks related to various transmission routes,
or estimates of rates of evolution. Mathematical models in the strict sense refer to mathematical
descriptions of processes thought to be associated with the dynamics of infection—for example, in a
population or within an individual. Such models take many forms, depending on the level of bi-
ological knowledge of processes involved and data available, and depending on the purpose.
Several classes of model are used, spanning the spectrum of information available. At one end

of the range are detailed individual-based simulation models, where large numbers of distinct
individual entities (with their own characteristic traits such as age, spatial location, sex, immune
status, risk profile, or behavior pattern) are described in interaction with each other, possibly in a
contact network, and with the infectious agent. At the other end are compartmental models where
no individuals are recognized, but only states for individuals (for example: susceptible, infectious,
immune) aggregated into compartments where everyone has the same average characteristics
and where interaction is typically uniform (everybody interacts with everybody else). Such models
do not describe the disease history of single individuals, but rather the time evolution of aggre-
gated variables, such as the number of individuals that are currently susceptible.
Mathematical models can have both mechanistic parts in their description, based on assump-

tions about biological mechanisms involved, and more phenomenological parts, where there is a
statistical or presumed relation between variables, without clear assumptions from which this re-
lation can be derived. An example of the former is the assumption of mass action to describe
interaction between individual hosts; an example of the latter is an empirical relation between the
length of an infectious period in a mosquito and environmental temperature.
For infectious disease dynamics, our world is clearly stochastic, in that chance events play a role in

many of the processes involved. Certainly at lower levels of biological aggregation, chance dominates—
for example, in infection of individual cells or in contacts individual hosts make. At higher aggregation
levels, many cells or individuals interact, and chance effects may average out to allow deterministic
descriptions.There are purely stochastic models, purely deterministic models, and models that are
mixed. It is important to point out that, even though the world is stochastic, stochastic descrip-
tions are not by definition better than deterministic descriptions. Both are still models of reality,
and the fact that chance plays a role may have a far less significant influence on model outcome
and prediction than choices made in the relations between ingredients and variables.
Areas of rapid growth are statistical and numerical methods and tools to estimate model pa-

rameters from, often scarce, mismatched or incomplete data, and to contrast model output with
real-world observations.
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mammal and bird reservoirs. Research on po-
tential emerging zoonoses draws on concepts
from across the spectrum of infectious disease
dynamics, disease ecology, microbiology, and
phylogenetic analysis. Particular challenges in-
clude estimating human-to-human transmis-
sibility against a backdrop of ongoing zoonotic
spillover, detecting anomalous outbreaks, and
assessing the risk that more dangerous strains
may arise through pathogen evolution.
The recently identified gap in methodology

for zoonoses with weak human-to-human trans-
mission (6) is being filled with new approaches
for estimating R0 and other transmission-related
quantities from subcritical outbreak data (19–21).
These studies address key public health concerns,
but rely on strong assumptions regarding the

quality and completeness of case observations.
Better information on surveillance program effi-
cacy could be gained through serological surveys
(where blood and saliva samples reveal evidence
of past and present infections) or sociological
study, and modeling studies can help to design
and characterize efficient surveillance programs
(22). Given the predominance of zoonotic path-
ogens among emerging infections, models for
transmission dynamics and evolution in multi-
species ecosystems and food webs (consisting of
host species and nonhost species interacting
ecologically and epidemiologically) are a crucial
area for future development (6, 23). The greatest
challenge—and the greatest prize—in modeling
emerging zoonoses is to assess which diseases
pose the most risk to humans and how these

might change over time and in different local-
ities (24). Such tasks, which will join molecular
studies to experimental infections to epide-
miological and ecological surveys, will drive
empirical and theoretical efforts for decades
to come.
The rising availability of pathogen genome

sequence data, coupled with new computational
methods, presents opportunities to identify with
precision “who infects whom” and the networks
of infection between humans and reservoirs (25).
Full realization of this potential, though, will re-
quire denser and more systematic whole-genome
sampling of pathogens coupled with associated
epidemiological data, as well as baseline infor-
mation on genetic diversity and evolutionary
rates, especially in animal hosts (26).

Pathogen evolution
and phylodynamics

As pathogen genetic data become
increasingly available, modelers are
finding ways to synthesize these new
data streams with more traditional
epidemiological information in phy-
lodynamic tools (27, 28). However,
current frameworks employ compart-
mental epidemiologicalmodels, which
do notmake efficient use of individual-
level epidemiological data. Although
sampling theory is well developed for
standard surveillance data, the rela-
tionship between a set of pathogen
sequences and the phylogeny inferred
from a population sample is more
complex (11). Many-to-one mapping
possibilities between, on the one hand,
combinations of epidemiological, im-
munological, and evolutionary pro-
cesses shaping sequences and, on the
other hand, the inferred phylogeny,
demand the integration of diverse
data sources and an increased focus
on systematic sampling.
Phylodynamic studies to date have

largely focused on fast-evolving RNA
viruses, driven by the large amount of
data generated for clinical [e.g., hepa-
titis C virus (HCV) or HIV)] or surveil-
lance (e.g., influenza) purposes (11).
Replicating these efforts on an ex-
panded array of pathogens, including
DNA viruses, bacteria, fungi, protozoa
(e.g., malaria), and helminths, is a
promising avenue for future research
(29). It is of particular importance in
the context of the evolutionand spread
of drug-resistant variants and vaccine
escape mutants. However, genome-
wide pathogen data also present chal-
lenges, in particular in relation to
accommodating recombination, reas-
sortment, and mobile genetic ele-
ments. Analysis of bacterial genomes
usually considers only those genes that
are shared across taxa, but there are
good reasons to believe that noncore

SCIENCE sciencemag.org 13 MARCH 2015 • VOL 347 ISSUE 6227 aaa4339-3

Fig. 1. Modeling for public health exemplified by rubella. (A to F) Policy questions are formulated; available data
are brought to bear on the question. In this example, the incidence of rubella is shown following the introduction of
vaccination in individuals under 15 or 15+ years of age in Costa Rica (127). Application of a nonlinear age-structured
SIR model (see Box 4) to these circumstances led to the collection of key missing data. In the bottom right-hand plot,
each square depicts a combination of birth rate and infant vaccine coverage reflecting different countries (e.g.,
Somalia depicted by a diamond and Nepal by a circle), colored by expected effect on congenital rubella syndrome
(CRS) in newborns, related to local R0 (128).This translates into confidence that routine vaccination is likely to reduce
the public health burden caused by CRS in Nepal (green), but not in Somalia (red).
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genes play an important role in bacterial evo-
lution, including the evolution of antibiotic re-
sistance (30).
Although sequence data are extremely valu-

able, to link these data fully to disease dynamics,
it will be important to determine how sequence
changes affect functions related to pathogen fit-
ness, such as replication rate, transmissibility,
and immune recognition. Molecular epidemi-
ological studies often treat pathogen genetic

variation as simply reflecting the underlying
transmission process, whereas in reality such
variation may play an important role in deter-
mining transmission dynamics, as exemplified
by escape from herd immunity by influenza A
virus (31).
“Deep” sequencing of pathogens within in-

dividual hosts generates information on within-
host diversity, resulting from evolution within
the host (often in response to drug treatment),

or multiple infections. To tackle within-host di-
versity, models that embed pathogen evolution
within a transmission tree are needed. Such mod-
els, which cross the within- and between-host
scales, are only just becoming analytically and
computationally feasible despite being proposed
several years ago (32). Similarly, although pro-
gress has been made in scaling inference from
genes to genomes (33), scaling inference to large
numbers of sequences is lagging far behind.
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Fig. 2. Examples of counterintuitive effects of nonlinear infection dy-
namics. (A) Nonlinear interaction between prevalence of a helminth infec-
tion and infection pressure (as measured by the mean intensity of existing
infections) means that control measures must have a disproportionately large
impact on intensity before prevalence is reduced. This effect is predicted by a
mathematical model (solid line) and corroborated by field data (crosses) (129).
(B) Nonlinear relation between total number of cases of congenital rubella
syndrome (CRS) and rubella vaccine coverage, showing that suboptimal levels of
vaccine coverage cause worse health outcomes than no vaccination [adapted
from (130)]. The line shows model predictions; similar effects have been docu-

mented for real rubella control situations (131). (C and D) Modeling results of
rebound of gonorrhea transmission with different treatment strategies
without (C) and with (D) antimicrobial resistance developing [adapted from
(132)]. In the presence of resistance, focusing treatment on the high-risk core
group leads to an increase in prevalence approaching that of untreated base-
line prevalence, after an initially strong decline for more than a decade. (E)
Box plot from field data of a nonlinear relation between R0 for dengue trans-
mission and average dengue hemorrhagic fever (DHF) incidence across
Thailand, showing that control measures that reduce R0 may paradoxically
increase cases of DHF [adapted from (133)].
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Multiple infections

Infectious disease epidemiology evolved by fo-
cusing on interactions between a single host
species and a single infectious agent. It is
becoming increasingly clear that multiple agents
simultaneously infecting the same host popula-
tions and individuals appreciably add to the
public health burden and complicate prevention
and control. Coinfections in relation to HIV— for
example, tuberculosis and HCV—or coinfection
of different strains of influenza A virus raise im-
portant public health and evolutionary issues.
Multiple agents infecting the samehost individual
have been shown to influence each other by in-
creasing or decreasing susceptibility and/or in-
fectivity of that individual, thereby influencing the
population dynamics of these agents in ways that
we have yet to explore and understand (34, 35).
Multiple infections of the same individual with

closely related pathogens occur when infection
elicits no immunity, or only a partial immune
response. Macroparasites, including many of the
important human helminth infections, are good
examples of pathogens that evade human im-
mune responses and cause repeated infection of
the same host (36). Biological mechanisms giving
rise to such multiple infections include sequen-
tial reinfections caused by antigenic drift in in-
fluenza, antigenic variation in respiratory syncytial
virus (RSV), and waning (slow loss of) immunity
in pertussis, while lack of cross-protection in
many colonizing microparasites— for example,
pneumococcus and human papilloma virus
(HPV)—allows for multiple concurrent infec-
tions. Although the existence of reinfections is
a clinical fact, population-level data are scarce as
reinfections are often subclinical and individual-
based longitudinal infection histories are often
only anecdotal. Results from new analytical ap-
proaches relating to deep sequencing and neu-
tralization tests covering multiple antigens are
being utilized (37).
The immunodynamics of influenza have clear

policy implications for the identification of high-
risk groups in connection with pandemic planning
(38), while the dynamics of waning immunity
are key to the current concerns about immuni-
zation level for pertussis (39). Multivalent vac-
cines covering only a targeted subset from the
circulating strains of pneumococcus and HPV
pose important new applied problems (40). The
spread of recombinant viruses implies the exist-
ence of multiple infections. One example is the
Sydney 2012 strain of norovirus, but how this
can occur in such an acute infection remains to
be understood, as the time window for multiple
exposures is limited, unless subclinical or envi-
ronmental reservoirs of infection are important.
Mathematical models could help to explore how,
for example, such subpopulations may contribute
to the dynamics of multiple infections.

Behavior of hosts

Human behavior is a fundamental determinant
of infectious disease dynamics, whether by af-
fecting how people come in contact with each
other, vaccination coverage, reporting biases, or

adherence to treatment. Traditional epidemic
models have tended to ignore heterogeneity in
contact behavior [although early HIV models
addressed heterogeneity in sexual behavior by
necessity (41)]. Increasing sophistication of con-
tact network models (42), together with data on
epidemiological contacts, creates opportunities
for understanding and controlling transmission
at a fundamental level (43) and opens up the
possibility of independent study of relevant social
factors (10). Recent years have seen exciting de-
velopments in the measurement of contact pat-
terns and “who might infect whom” through
advances in individual electronic identification
technology. This is a promising avenue for link-
ing pathogen genetic data and human behavior.
Contact patterns are not static and can shift

during outbreaks as individuals change their be-

havior in response to perceived risk and public
health interventions (44). Modeling has illumi-
nated this process—for example, by the incorpo-
ration of peer influence on vaccination behavior
intomodels of infectious disease dynamics (45, 46).
Analysis of data from online social networks has
also created promising opportunities to validate
such approaches with empirical observations
(47, 48).
Movement and travel are tightly linked to the

spread of infection and have been explored
through models to highlight commuting and ag-
ricultural migration driving local disease trans-
mission (49) and global disease patterns through
air travel (50). These processes are now being in-
vestigated to gain insights into the more complex
case of vector-borne diseases, such as malaria and
dengue, where both host and vector movement
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Box 2. Influenza: prevention and control.

Human influenza—pandemic and seasonal—remains a major issue in public health owing to
the continued emergence of novel genetic strains, and one where models have successfully
addressed questions from basic biology to epidemiology and health policy. In recent years,
modeling and other quantitative analysis has been used to study at least three major issues:
pandemic preparedness and mitigation strategies (84–89), rethinking vaccination strategies
for seasonal influenza (70), and improved methods in phylodynamics and influenza strain
evolution (11). Recent models of influenza fitness have also been developed to predict viral
evolution from one year to the next, providing a principled and more precise method for the
vaccine selection required every year (90).
For seasonal influenza, models have played a key role in providing the scientific evidence base

for vaccination policy, making use of the information in multiple, often unavoidably biased, data
sources such as syndromic time series, vaccine coverage and efficacy, economic costs, and con-
tact patterns in the population. For example, a combined epidemic and economic model was fitted
to fine-grained data from many sources to describe the dynamics of influenza in the United
Kingdom, and the influence of previous vaccination programs (70).With confidence in the model’s
predictions based on its ability to capture past patterns, it was used to look at alternative vac-
cination strategies and led to a new national policy to vaccinate school-age children (91). Targeting
those individuals most likely to spread the virus, rather than only those most likely to suffer the
largest morbidity, is a marked departure from established practice in the UK and is currently under
consideration elsewhere (92).

Box 3. HIV: test and treat.

Mathematical modeling has played a central role in our understanding of the HIV epidemic, and
in informing policy from the outset of our recognition of the pandemic (93). Some of the many
insights include a model-based analysis of viral load data from inhibition experiments, which
revealed the rapid and ongoing turnover of the within-host viral population (94), and the use of
phylogenetic models to show that the HIV pandemic did not emerge in the 1980s, but had its roots
in the early 20th century (95).
A key contribution of mathematical modeling has been to identify when viral transmission

occurs over the course of infection, which determines the potential to halt spread by various
measures. Models have shown that transmission of HIV depends on the epidemic phase and the
sexual behavior of the population, and a large proportion of transmissions may occur late in infection
(96). Model-based inference in the Netherlands also suggested that the effective reproduction
number (Box 4) had fallen below 1 due to a combination of low-risk behavior and a very effective diagnosis
and treatment program (97). The debate was transformed in the mid-2000s, when eradication of HIV
through a “test and treat” strategy was hypothesized (98, 99). Subsequent trial results showing that
antiretroviral treatment (ART) of HIV-positive individuals could practically eliminate transmission
within sexual partnerships when the index case is treated (100) have further supported the role of
treatment as prevention. Although these findings have not dispelled concerns about transmission
early in infection (93), or about extra-couple transmission (101), it is suggested that high population
coverage of ART may have reduced the incidence of HIV infection in rural KwaZulu-Natal, South
Africa (102).
These findings, combined with the prospect of cheaper, more effective drugs and delivery

structures, underpin UNAIDS’ goal of “zero new infections” for HIV and the initiation of a multi-
million dollar cluster-randomized trial (103), which will have its outcome assessed against model
predictions. In the meantime, the scientific discussion of the effectiveness of ART in preventing
transmission continues, sparked by studies that fail to show a decline in incidence after increased
treatment (104). Such debates are essential to elucidate areas for improvement of the models
used and data needs for such improvement, and to highlight methodological limitations (105).
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can interact to drive local (51) and large-scale
dynamics (52).

Elimination and eradication

Modeling has long provided support for elimi-
nation efforts: Vector control (53), critical com-
munity size (54), herd immunity, and critical
vaccination threshold (55, 56) were all powerful

insights from models framed in relatively sim-
ple and homogeneous terms. Subtleties and com-
plexities in many current eradication programs,
as well as the availability of novel data sources,
have called for a range of extensions in the the-
ory. As we approach elimination targets, disease
dynamics have changed in ways that were large-
ly predicted by models, but also in unanticipated

ways as a result of ignorance about key epide-
miological processes (3).
Incentives for control efforts also change, both

at the individual level [passive or active refusal
to participate can develop (57)] and at the coun-
try level (58). This reinforces the call for develop-
ment of models of human behavior and its
interaction with infectious disease dynamics (9)
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Table 1. Principles for modeling infection dynamics. As different infections
have become the focus of public health attention, the modeling community
has responded by developing improved concepts and methods. The table
concentrates on the period since 1950. The first column lists the classes of
infection, and the second column lists factors whose importance to infection

dynamics became particularly clear in relation to those infections; the third
and fourth columns highlight concepts and methods that were developed in
response. For each row, only a few typical references are given. Many factors,
concepts, and methods are relevant, in current use, and in continual develop-
ment for much larger classes of infectious agents.

Motivating studies Important factors Concepts Methods

Malaria
[1910s, 1950s onwards,
(53, 106, 107)]

Transmission via insect vectors;
nonlinear dependence of
transmission on mosquito
biting rate; influence of
environmental and climatic
variables.

Threshold for control, basic
reproduction number.

Models with two host species (host-
vector models); using models to
support and guide field campaigns;
relating models to field data.

Childhood infectious
diseases, e.g., measles.
[1950s onwards,
(54, 108)]

Immunizing infections; spatial
and temporal heterogeneity;
demography; age structure;
household structure.

Critical community size and
herd immunity; periodic
outbreaks; fade out; vaccine
efficacy.

SIR models; age-structured models;
models with periodic forcing; spatial
and stochastic models; metapopulation
models; time-series models.

Macroparasites.
[1970s onwards, (108)]

Clumped infections, multistrain
and multispecies infections,
cross immunity, concurrent
infections.

Consequences of
overdispersed distribution
of parasite load (Fig. 1)

Stochastic models, approximations
including hybrid models and
moment closure.

Sexually transmitted
infections, e.g., HIV.
[1980s onwards,
(108, 109)]

High/low risk groups; nonrandom
contact structure; partnerships;
within-host strain diversity and
evolution; time scale.

Incubation and infectious
period distribution; core
group; next-generation
matrix and operator;
partnership dynamics.

Statistical methods (e.g., back
calculation); models with
(dis)assortative mixing; pair-formation
models; within-host dynamic models.

Veterinary outbreaks,
e.g. BSE and FMD.
[1990s onwards,
(110, 111)]

Fixed spatial locations with
changing contact networks.

Local versus long-range
transmission; spatial
intervention (ring
vaccination/culling);
conflict of priorities at
different scales.

Individual-based models and spatial
simulations (FMD); data-driven
real-time modeling; inference of
transmission trees.

Novel emerging
infections, e.g., SARS,
Nipah virus, MERS.
[2000 onwards,
(6, 19, 112–115)]

Behavior change; global
interconnectedness and
international cooperation
in control; responses in
absence of biomedical
measures; animal reservoirs.

Zoonotic spillover; stuttering
chains; importance of index
case; superspreaders;
unobserved dynamics in
an animal reservoir;
supershedding

Contact tracing; modeling international
spread and control; quarantine
and case isolation; individual
heterogeneity in infectiousness,
incubation, and latency period.

Influenza, including
avian influenza.
[Present, (27, 28, 116–118)]

Distribution of prior immunity;
within-population and species
strain differences, virus
evolution and interaction;
role of wildlife and farm
animals.

Pandemics; spillover
between wild birds and
farmed birds; phylodynamics.

Interaction between immunological
and epidemiological dynamics;
integrating phylogenetic and
epidemic methods and models.

Vector-borne diseases,
e.g., dengue, malaria.
[Present, (119-122)]

The influence of climate and
environment on vector and
pathogen development;
animal reservoirs; interaction
between strains within-
host and between-host.

Dilution effect and role of
biodiversity in infectious
disease dynamics;
reemerging infections.

Evolutionary impact of vaccines/other
interventions; synthesis of data
from ecology and epidemiology;
elimination modeling; statistical
modeling of environmental vector
suitability.

Bacterial infections, e.g.,
pneumococcal disease,
MRSA, and tuberculosis.
[Present, (39, 123–126)]

Antibiotic/drug resistance;
adaptive dynamics.

Vaccine effectiveness;
interacting natural
immunity and vaccine
boosting.

Modeling interacting and emerging
strains; stochastic models in small
populations.
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potentially drawing on new data sources from
social media (59, 60), as well as for models that
can capture national and nongovernmental mo-
tivations, interactions, and competition, eco-
nomical or otherwise. Long-term control puts
pathogens under strong selection for resistance,
calling for evolution-proof control methods (61)
and novel vaccine technologies and their opti-
mized delivery (62).
Finally, since the era of smallpox eradication,

patterns of global disease circulation have changed
radically. Human mobility and migration are
increasing global connectivity, strengthening the
need for cooperation and international synchro-
nization of efforts (as illustrated by polio). Tech-
niques for analysis of novel data sources are
again key here; e.g., mobile phone records pro-
vide unique opportunities to understand disease
source-sink dynamics (52).

Computational statistics, model
fitting, and big data

By definition and design, models are not reality.
The properties of stochasticity and nonlinearity
strongly influence the accuracy of absolute pre-
dictions over long time horizons. Even if the
mechanisms involved are broadly understood and
relevant data are available, predicting the exact
future course of an outbreak is impossible owing
to changes in conditions in response to the out-
break itself, and because of the many chance
effects in play. These stochastic effects dominate

developments in situations with relatively few
infected individuals that occur at emergence,
approaching the threshold for sustained host-
host spread, or approaching elimination and
eradication. This makes it virtually impossible to
predict which infectious disease agent is going
to emerge and evolve next and where, or to
predict when and where the next or last case in
an outbreak will occur. There is, typically in
complex systems, a fundamental horizon beyond
which accurate prediction is impossible. The
field has yet to explore where that horizon is and
whether computational tools and additional
data (and if so which data) can stretch predic-
tions to this limit. In contrast, “what-if” scenarios
for public health intervention can provide qual-
itative (and increasingly semiquantitative) in-
sight into their population consequences.
With growing applications in public health,

there is an increasing demand to validate mod-
els by making model predictions consistent with
observed data. The development of ever-more-
powerful computers is accompanied by new
techniques utilizing this power, notably for
statistically rigorous parameter estimation and
model comparison. Techniques such as Markov
chain Monte Carlo (MCMC) have become firm-
ly established tools for parameter estimation
from data in infectious disease models [e.g.,
(63)], andMonte Carlo basedmethods will play
a pivotal role in addressing the challenges that
lie in reconciling predictions and observations

(64, 65). Other techniques, such as so-called
particle filters, approximate Bayesian compu-
tation, emulation, and their combinations with
MCMC [e.g., (66)], are rapidly developing and
allow stochastic models that explicitly account
for incomplete observations to be matched to
time series of cases, giving insights into sce-
narios as diverse as cholera in Bangladesh (67)
and influenza (68, 69). The need to integrate
multiple data sources (70, 71), as well as to
include uncertainty in model parameters and/
or structure, has driven the use of Bayesian
approaches.
Although the rapid expansion of infectious

disease models and their application over the
past decade has coincided with an increase in
open access data sets available from a variety of
sources, progress in data capture needs to be
accelerated. Although some of these technolog-
ically advanced data streams have been incor-
porated into models—for example, to track the
incidence of influenza in the United States (72),
to elucidate the spatial dynamics of measles and
malaria in Africa (53, 73), and to chart the
spread of dengue globally (74)—much more re-
mains to be done to leverage data collected from
different sources (e.g., demographic, genetic, epi-
demiological, treatment, and travel patterns) and
at different temporal and spatial scales.

Concluding remarks

Infectious diseases are an important frontier in
public health, and their prevention and control
call for global, rather than national or regional,
coordinated efforts (75–78). The success of small-
pox and rinderpest eradication campaigns shows
the possibilities; the global spread of newly
emerged pathogens (recently avian influenza
strains and MERS coronavirus), the difficulties
in curbing the spread of antibiotic resistance,
the upsurge of polio toward the “end-phase” of
its eradication, and the recent unprecedented
spread of Ebola virus, are examples that show
the need for international coordination and col-
laboration. Nonlinearity in infectious disease
dynamics and global connectivity cause subop-
timal national decisions on control and prevention
to have regional and even global repercussions.
Given the mismatch with regions where most

expertise on infectious disease dynamics is con-
centrated, it is important to empower local scien-
tists and policy-makers, in regions where the
burden of disease is heaviest, about the problems
facing their own countries and the consequences
of local actions. It is essential to make exper-
tise, data, models, statistical methods, and soft-
ware widely available by open access. There
are several initiatives (e.g., Thiswormyworld.org,
Garkiproject.nd.edu, EDENextdata.com, the Hu-
manitarian Data Exchange (HDX), and the
Malaria Atlas Project), but more needs to be
done. Modeling tools and software for data ana-
lysis are beginning to become open source, such
that findings can be replicated, additional sce-
narios can be evaluated, and others can incor-
porate methods for data analysis or simulation.
Ultimately, sharing models guarantees more
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Box 4. Some fundamental terms and concepts.

• susceptible: individual who is at risk of becoming infected if exposed to an infectious
agent.

• basic reproduction number, R0: average number of infections caused by a typical infected
individual in a population consisting only of susceptibles; if R0 > 1, the infectious agent can
start to spread.

• effective reproduction number, Re: average number of infections caused by a typical
infected individual when only part of the population is susceptible; as long as Re > 1, the agent
can continue to spread.

• herd immunity: state of the population where the fraction protected is just sufficient to
prevent outbreaks (Re < 1).

• critical elimination threshold, pc: proportion of the susceptible population that needs to
be successfully protected—for example, by vaccination—to achieve herd immunity; pc = 1: 1/R0
is a rule of thumb from models when hosts are assumed to mix randomly.

• force of infection: per capita rate at which susceptible individuals acquire infection.

• final size: fraction of the initial susceptible population that eventually becomes infected
during an outbreak.

• prevalence: proportion of the population with infection or disease at a given time point.

• superspreader/supershedder: infected individual that produces substantially more new
cases than the average because of greater infectiousness, longer duration of infectiousness,
many more transmission opportunities and contacts, or combinations of these. Even when the
average R0 is relatively small, these individuals have large effects on outbreaks.

• metapopulation: collection of populations, separated in space, but connected through
movement of individuals.

• critical community size: minimum number of individuals in a population that allow an
infectious agent to persist without importation of cases.

• case fatality ratio: proportion of symptomatic infections that result in death.

• SIR model: most basic model metaphor for immunizing infections where each living individual
is assumed to be in one of three epidemiological states at any given time: susceptible, infected and
infectious, and recovered and immune. The model specifies the rates at which individuals change
their state. Individuals progress from S to I when infected, then from I to R upon recovery. Many
variants exist—for example, recognizing different classes of S, I, and R individuals, depending on
individual traits such as age.
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reproducible results, while maximizing model
transparency.
Making data sets widely available is also cru-

cial, for example, to support replication of find-
ings and broader comparative analyses (79). As
models become open access, so should much
of the data collected by governments, inter-
national agencies, and epidemiology research
groups. Two outbreaks never occur in exactly
matching circumstances, even for the same in-
fectious agent, so there is potential to study
many outbreaks in parallel to gain insight into
the determinants of outbreak pattern and se-
verity. Looking forward, there is a major oppor-
tunity to design experiments, clinical trials [for
example for vaccines (80)], and surveillance pro-
tocols to test model predictions or assumptions,
and to help reduce or better target the enormous
costs involved. By integrating modeling approaches
throughout the full life cycle of infectious dis-
ease policies, including economic considerations
(58, 70, 81), health outcomes can be improved
and scientific understanding can be advanced.
At present, the evidence provided by infectious

disease models is not considered by the Grading
of Recommendations Assessment, Development
and Evaluation (GRADE) working group (www.
gradeworkinggroup.org) alongside that of con-
ventional studies such as clinical trials. Regard-
less, models are essential when diverse sources of
data (including GRADE-scale evidence) need to
be combined and weighed to assess quality of
evidence and recommendations made in health
care scenarios. In many cases, the definitive trial
cannot be performed, and in such circumstances
models can offer insight and extract maximum
value from data that are available. In recent
years, uniformity of practice and quality control
for models has received more attention, resulting
in initial attempts to characterize good modeling
practice for infectious diseases (82, 83).
The optimal use of models to inform policy

decisions requires a continuous dialogue be-
tween the multidisciplinary infectious disease
dynamics community and decision-makers. This
is increasingly understood by governments in
developed countries, in nongovernmental agen-
cies and by large funding bodies. This dialogue
will help to reduce the burden from infectious
diseases by providing better-informed control
strategies. Mathematical models will allow us to
capitalize on new data streams and lead to an
ever-greater ability to generate robust insight and
collectively shape successful local and global
public health policy.
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