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ABSTRACT

The test-negative design has become a standard approach for vaccine effectiveness studies. However,
previous studies suggested that it may be more sensitive than other designs to misclassification of
disease outcome caused by imperfect diagnostic tests. This could be a particular limitation in vaccine
effectiveness studies where simple tests (e.g. rapid influenza diagnostic tests) are used for logistical
convenience. To address this issue, we derived a mathematical representation of the test-negative
design with imperfect tests, then developed a bias correction framework for possible misclassification.
Test-negative design studies usually include multiple covariates other than vaccine history to adjust
potential confounders; our methods can also address multivariate analyses and be easily coupled
with existing estimation tools. We validated the performance of these methods using simulations of
common scenarios for vaccine efficacy and were able to obtain unbiased estimates in a variety of
parameter settings.
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Abbreviations VE, vaccine effectiveness; TND, test-negative design; TD, target disease; ND, non-target disease; PCR,
polymerase chain reaction; MLE, maximum likelihood estimate; MO, multiple overimputation; EM, expectation-
maximisation.

1 Introduction1

Vaccine effectiveness (VE) is typically estimated as the vaccine-induced risk reduction of the target disease (TD) and has2

been traditionally studied by the cohort or case-control designs. However, the test-negative design (TND) is becoming a3

popular alternative design for vaccine effectiveness (VE) studies [1, 2]. This is a modified version of the case-control4

study with an alternative definition of the control group; traditional case-control studies usually define controls as5

non-disease individuals in the study population, while the TND studies use individuals with similar symptoms to the6

target disease but presenting negative test results (i.e., patients of non-target diseases; ND). The test-negative design can7

therefore minimise ascertainment bias by including only medically-attended patients in both case and control groups.8

Many TND studies have focused on influenza vaccination, but recent studies have also targeted other diseases including9

pneumococcal disease [3, 4] and rotavirus disease [5, 6, 7].10

Despite its increasing popularity, TND can be more sensitive than other study designs to misclassification of disease11

outcome. Multiple studies have shown that VE is underestimated when the diagnostic tests used in the study are12

imperfect (i.e. have a sensitivity and/or a specificity less than 100%) [8, 9, 10]. This can be a particular issue when13

simple tests (e.g. rapid diagnostic tests) are used for logistical convenience, as simple tests tend to have lower diagnostic14
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performance than more advanced tests (e.g. polymerase chain reaction; PCR). Previous studies evaluated the expected15

degree of bias and concluded that specificity had a more important effect on bias than sensitivity [8, 9, 10]. These16

findings appear to support the use of rapid tests, despite limited sensitivity, because the specificity of these tests17

is typically high [2]. However, theoretical studies to date have been based on specific assumptions about efficacy18

and pathogen epidemiology; it is therefore unclear whether such conclusions hold for all plausible combinations of19

scenarios.20

If a study is expected to generate a non-negligible bias in estimation, such bias needs to be assessed and—if possible—21

corrected before the estimate is reported. Greenland [11] proposed a bias correction method for cohort studies where the22

sensitivity and specificity of the test are known (or at least assumed). However, this method cannot apply to case-control23

studies because of differential recruitment, whereby the probability of recruiting (test-positive) cases and (negative)24

controls may be different. Although TND studies are often considered to be special cases of case-control studies, they25

are free from the issue of differential recruitment because the recruitment and classification are mutually-independent.26

This means that, while Greenland’s method does not apply to TND, another type of bias correction may still be possible.27

For example, De Smedt et al. have characterised the misclassification bias in VE in the test-negative design in a28

simulation study [3]. One limitation of this approach is it relies on the unobserved “true” disease risk being known,29

where in reality this is not usually measurable in field studies. As a result, bias correction methods for TND studies that30

are directly applicable to field data have not yet been proposed. Moreover, previous analysis of misclassification bias31

has not considered the impact of multivariate analysis, where potential confounders (e.g. age and sex) are also included32

in the model used to estimate VE.33

To address these issues, we develop a bias correction method for the test-negative VE studies that uses only data34

commonly available in field studies. We also apply these methods to multivariate analyses. As our approach uses the35

so-called multiple overimputation framework (generalisation of multiple imputation) [12], it can easily be coupled with36

a wide range of estimation tools without modifying their inside algorithms. Finally, we evaluate the performance of our37

methods by simulations of plausible epidemiological scenarios.38

2 Methods and results39

2.1 Characterising bias in test negative design studies40

First, we consider the case where only vaccination history is included as a risk factor of acquiring the TD (i.e. the41

univariate setting). In this case, the (true) case counts can in theory be summarised in a two-by-two table as shown42

below:43

Vaccinated Unvaccinated
Target disease xV xU

Non-target disease yV yU
Subtotal SV SU

Following the approach of Haber et al. (2015) [13], we consider four steps in the case reporting process: vaccination,44

onset of symptoms, seeking of medical care, and diagnosis. For simplicity, let us assume that occurrence of TD and ND45

are mutually independent, where their prevalences are represented as r1 and r0, respectively1. Let v be the vaccination46

coverage; in observational studies, vaccinated and unvaccinated population can have different likelihoods of seeking47

medical treatment (we denote such probabilities as mV and mU , respectively). As our focus in the present study is the48

bias in VE estimation caused by imperfect tests, we made two key assumptions following Haber et al [13]: vaccination49

does not affect the risk of ND or the relative probability µ of medical attendance between TD and ND (which may50

reflect different disease severity between TD and ND). Namely, the study was assumed to be able to provide an unbiased51

VE estimate if tests are perfect. Based on these assumptions, we can classify the expected incidence in population N52

into four categories:53

Vaccinated Unvaccinated
Target disease vγµmV r1N (1− v)µmUr1N

Non-target disease vmV r0N (1− v)mUr0N
Subtotal vmV (γµr1 + r0)N (1− v)mU (µr1 + r0)N

1It has been suggested that a possible violation of this assumption occur as a result of virus interference [14], but conclusive
evidence for this is currently lacking [15, 16] and the effect on VE estimates may be limited in any case [17]
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where γ is the relative risk of TD in the vaccinated population (i.e., γ = 1−VE). mV and mU are the probabilities of54

the vaccinated and unvaccinated seeking medical care given ND (those given TD are µmV and µmU , respectively). In55

TND studies, the (true) odds ratio corresponds to the relative risk γ.56

Suppose that the true data in a TND study (xV , yV , xU , yU ) is as described in the above tables. However, due to57

imperfect tests, we would instead expect to obtain the following observations:58

Vaccinated Unvaccinated
Test positive αxV + (1− β)yV αxU + (1− β)yU
Test negative (1− α)xV + βyV (1− α)xU + βyU

Subtotal SV SU

where α and β are the sensitivity and specificity of the test, respectively. Denoting observed case counts with59

misclassification by X and Y , the process of diagnosis can be represented by the following matrix expression:60 [
XV XU

YV YU

]
=

[
α 1− β

1− α β

] [
xV xU
yV yU

]
. (1)

Matrix C =

[
α 1− β

1− α β

]
describes the conversion from the true disease state to the observed result. We hereafter61

refer to C as the classification matrix.62

The observed odds ratio (subject to the misclassification bias) is therefore given as63

XV

YV

/
XU

YU
=
αxV + (1− β)yV
(1− α)xV + βyV

/
αxU + (1− β)yU
(1− α)xU + βyU

=
[αγµr1 + (1− β)r0][(1− α)µr1 + βr0]

[(1− α)γµr1 + βr0][αµr1 + (1− β)r0]

=
[αγδ + (1− β)][(1− α)δ + β]

[(1− α)γδ + β][αδ + (1− β)]
,

(2)

where δ = r1µ
r0

is the odds of the (medically-attended) target disease in the unvaccinated population.64

We define bias in the VE estimate to be the absolute difference between the (raw) estimate and the true value. The65

expected bias B is a function of α, β, γ and δ:66

B(α, β, γ, δ) = VEraw −VEtrue

= γ − [αγδ + (1− β)][(1− α)δ + β]

[(1− α)γδ + β][αδ + (1− β)]
.

(3)

This suggests that the influence of sensitivity/specificity on the degree of bias varies depending on the case ratio67

δ/(1 + δ), i.e. the ratio between incidence of medical attendance for TD and ND in the study population (Figure 1).68

The degree of bias also depends on γ but is independent of mV and mU . The degree of bias is largely determined by69

the test specificity when the case ratio is small, but the influence of sensitivity and specificity is almost equivalent with a70

case ratio of 0.6. It is notable that high specificity does not always assure that the bias is negligible. This may be true if71

specificity is strictly 100% and the case ratio is low to moderate, but a slight decline to 97% can cause a bias up to72

10-15 percentage points. The effect of sensitivity is also non-negligible when the case ratio is high.73

When the expected bias is plotted against the case ratio with various combinations of test performance, we find that74

VE estimates can be substantially biased for certain case ratios (especially when the ratio is far from 1:1), even with75

reasonably high sensitivity and specificity (Figure 2A). In TND studies, researchers have no control over the case ratio76

because the study design requires that all tested individuals be included in the study. We found that the proportion of77

TD-positive patients in previous TND studies (retrieved from three systematic reviews [18, 19, 20]) varied considerably,78

ranging from 10% to 70% (Figure 2B)2. Because of this large variation in the case ratio, it would be difficult to79

predict the degree of bias before data collection. Post-hoc assessment and correction therefore need to be considered.80

(Further analysis of the relationship between the degree of bias and parameter values can be found in the supplementary81

information.)82

2Strictly speaking, proportion positive is a different quantity from case ratio, but it should serve as a reasonable proxy of the case
ratio in most settings
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Figure 1: Bias in VE estimates caused by misclassification for different combinations of parameter values. (A) – (C)
Estimated VE plotted against sensitivity. (A) True case ratio = 0.2 (B) 0.4 (C) 0.6. Each two sets of lines respectively
correspond to different true VEs (80% and 40%, denoted by the dotted lines). (D) – (F) Estimated VE plotted against
specificity. (D) True case ratio = 0.2 (E) 0.4 (F) 0.6.

2.2 Bias correction in univariate analysis83

2.2.1 Model and statistical analysis84

To develop a correction method that can address the bias presented in the previous section, we first model the case85

reporting process in the univariate setting as follows. Let us assume that incidence of TD and ND both follow86

Poisson-distributions. As presented in Section 2.1, the mean total incidence in the unvaccinated population is given87

as λU = (1 − v)mU (r1µ + r0)N . Let λV = vmV
(1−v)mU λU so that λV corresponds to the mean total incidence in88

the vaccinated population (= Nv) when γ = 1, i.e. VE=0. This definition is to ensure that parameters γ and λV89

are mutually independent. Let δ = r1µ
r0

be the odds of the (medically-attended) target disease in the unvaccinated90

population. Using these four parameters γ, δ, λV , λU , we get the following table for (potentially mis-classified) mean91

case counts:92

Vaccinated Unvaccinated
Test positive αγδ+(1−β)

1+δ λV
αδ+(1−β)

1+δ λU

Test negative (1−α)γδ+β
1+δ λV

(1−α)δ+β
1+δ λU

Subtotal 1+γδ
1+δ λV λU

4
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Figure 2: Biased VE estimates with varying case ratio and the observed proportion of positive patients. (A) The
proportion of test positive patients in TND studies from systematic reviews. The proportions were retrieved from three
systematic reviews [18, 19, 20]. (B) Estimated VE plotted against case ratio. Two sets of lines respectively correspond
to different true VEs (80% and 40%, denoted by the dotted lines). The histogram in Panel (A) is overlaid on the x axis.

When data D = (XV , YV , XU , YU ) is obtained following this misclassified pattern, we can construct the likelihood of93

obtaining such data, given underlying parameters, as94

L(γ, δ, λV , λU ;D) = Pois

(
XV ;

αγδ + (1− β)

1 + δ
λV

)
Pois

(
YV ;

(1− α)γδ + β

1 + δ
λV

)
Pois

(
XU ;

αδ + (1− β)

1 + δ
λU

)
Pois

(
YU ;

(1− α)δ + β

1 + δ
λU

)
.

(4)

By maximising this likelihood over all parameters, we can obtain a maximum likelihood estimate (MLE) of the odds95

ratio γ∗ that accounts for misclassfication. Let us refer to96

γ∗ =
XV − 1−β

β YV

YV − 1−α
α XV

·
YU − 1−α

α XU

XU − 1−β
β YU

(5)

as the "corrected odds ratio", which gives an unbiased estimate of γ. Comparing γ∗ with the the "raw" odds ratio XV YU
YVXU

,97

we find that the estimate can be corrected using the following substitution98

XV → XV − oβYV
YV → YV − oαXV

XU → XU − oβYU
YU → YU − oαXU

(6)

where oα = 1−α
α and oβ = 1−β

β are the odds of diagnostic errors corresponding to sensitivity and specificity,99

respectively, which take 0 when sensitivity/specificity is perfect. Also note that the same odds ratio is obtained by100

taking the odds ratio of the reconstructed data table where the inverted classification matrix is applied:101

C−1
[
XV XU

YV YU

]
=

1

α+ β − 1

[
β 1− β

1− α α

] [
XV XU

YV YU

]
. (7)

The determinant c = α+β−1 is the Youden index of the test and satisfies 0 < c ≤ 1 (if c < 0, the test is not predictive102

and the definitions of positive/negative should be swapped).103

5

 .CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.not peer-reviewed)

(which wasThe copyright holder for this preprint  . http://dx.doi.org/10.1101/19002691doi: medRxiv preprint first posted online Jul. 20, 2019 ; 

http://dx.doi.org/10.1101/19002691
http://creativecommons.org/licenses/by/4.0/


In some (relatively rare) cases, one or more quantities in Eq. (6) may become negative due to random fluctuations in104

observation. Theoretically, negative values are not permitted in as true case counts, and thus such negative quantities105

would need to be truncated to 0. As a result, the corrected odds ratio can be either 0 or infinity. Such an estimate would106

suggest that the study does not have a sufficient sample size to properly evaluate VE and that the study design itself107

might need to be reconsidered.108

The confidence interval for VE can be obtained by assuming log-normality of the odds ratio γ, i.e.,

γ = γ∗ exp(±1.96σ∗),

where σ is the shape parameter of the log-normal distribution and is empirically given as109

σ∗ = SD(log(γ∗))

=c

√
1

SV
· πV (1− πV )

(1− πV − (1− α))2(πV − (1− β))2
+

1

SU
· πU (1− πU )

(1− πU − (1− α))2(πU − (1− β))2
,

(8)

where πV and πU are observed (uncorrected) TD frequency (πV = XV
XV +YV

and πU = XU
XU+YU

). (See Appendix for110

details of the MLE and confidence intervals.)111

2.2.2 Simulation112

To assess the performance of the corrected odds ratio given in Equation (22), we used simulation studies. TND113

study datasets were generated based on the likelihood presented in Equation (4), where the mean total sam-114

ple size ( 1+γδ1+δ λV + λU ) was set to be 3,000. Parameter values were chosen according to a range of scenar-115

ios shown in Table 1, and the true vaccine effectiveness VE = 1 − γ was compared with the estimates ob-116

tained from the simulated data. For each scenario, simulation was repeated 500 times to yield the distribution117

of estimates. Reproducible codes (including those for simulations in later sections) are reposited on GitHub118

(https://github.com/akira-endo/TND-biascorrection/).119

Table 1: Simulation settings

ID Scenario True VE (γ) λV /λU Case ratio ( γ
1+γ

) Sensitivity (α) Specificity (β)
1 Baseline: low VE 0.4 0.5 0.5 0.8 0.95
2 Baseline: high VE 0.8 0.5 0.5 0.8 0.95
3 High quality test: low VE 0.4 0.5 0.5 0.95 0.97
4 High quality test: high VE 0.8 0.5 0.5 0.95 0.97
5 Low quality test: low VE 0.4 0.5 0.5 0.6 0.9
6 Low quality test: high VE 0.8 0.5 0.5 0.6 0.9
7 High TD incidence: low VE 0.4 0.5 0.7 0.8 0.95
8 High TD incidence: high VE 0.8 0.5 0.7 0.8 0.95
9 Low TD incidence: low VE 0.4 0.5 0.3 0.8 0.95
10 Low TD incidence: high VE 0.8 0.5 0.3 0.8 0.95
11 High vaccine coverage: low VE 0.4 0.7 0.5 0.8 0.95
12 High vaccine coverage: high VE 0.8 0.7 0.5 0.8 0.95
13 Low vaccine coverage: low VE 0.4 0.3 0.5 0.8 0.95
14 Low vaccine coverage: high VE 0.8 0.3 0.5 0.8 0.95

We found that the uncorrected estimates, directly obtained from the raw case counts that were potentially misclassified,120

exhibited substantial underestimation of VE for most parameter values (Figure 3). On the other hand, our bias correction121

method was able to yield unbiased estimates in every setting, whose median almost correspond to the true VE. Although122

the corrected and uncorrected distributions were similar (with a difference in median ∼ 5%) when VE is relatively123

low (40%) and the test has sufficiently high sensitivity and specificity (95% and 97%, respectively), they became124

distinguishable with a higher VE (80%). With lower test performances, the bias in the VE estimates can be up to125

10-20%, which may be beyond the level of acceptance in VE studies.126

2.2.3 Bias correction of VEs reported in previous studies127

We have seen that the degree of bias for uncorrected VE estimates depends on parameter values. To explore the possible128

degree of bias in existing VE studies, we extracted the reported crude VEs (i.e. VEs without adjustments of potential129

confounders) from two systematic reviews [18, 20] (Young et al. [19] was not included because they did not report130

case counts) and applied our bias correction method assuming different levels of test sensitivity and specificity. The131
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Figure 3: Bias correction for simulated data in the univariate setting. The distributions of bias-corrected VE estimates
(boxplots in blue) are compared with those of raw VE estimates without correction (red). Five hundred independent
datasets were randomly generated for each set of parameter values, and the corrected and uncorrected VE estimates are
compared with the true value (black solid line).

case counts for each study summarised in the reviews were considered eligible for the analysis if the total sample size132

exceeded 200. Varying the assumed sensitivity and specificity, we investigated the possible discrepancy between the133

reported VE (or crude VE derived from the case counts if unreported in the reviews) and bias-corrected VE. We did not134

consider correcting adjusted VEs because it requires access to the original datasets.135

Figure 4 displays the discrepancy between the reported VE and bias corrected VE corresponding to a range of136

assumptions on the test performance. Many of the extracted studies employed polymerase chain reaction (PCR)137

for the diagnostic test, which is expected to have a high performance. However, the true performance of PCR138

cannot be definitively measured as there is currently no other gold-standard test available. Figure 4B suggests that139

even a slight decline in the test performance can introduce a non-negligible bias in some parameter settings. Our140

bias correction methods may therefore also be useful in TND studies using PCR, which would enable a sensitivity141

analysis accounting for potential misdiagnosis by PCR tests. In this light, it is useful that the corrected odds ratio142

γ∗ =
XV − 1−β

β YV

YV − 1−α
α XV

· YU−
1−α
α XU

XU− 1−β
β YU

is a monotonic function of both α and β (given that all the four components are positive).143

The possible range of VE in a sensitivity analysis is obtained by supplying γ∗ with the assumed upper and lower limits144

of sensitivity and specificity.145

2.3 Bias correction in multivariate analysis146

2.3.1 Theoretical framework147

TND studies often employ a multivariate regression framework to address potential confounding variables such as148

age. The most widespread approach is to use linear models (e.g., logistic regression) and include vaccination history149

as well as other confounding variables as covariates. The estimated linear coefficient for vaccination history can150
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Figure 4: Bias correction method applied to published VE estimates assuming various test sensitivity and specificity.
Case count data were extracted from two systematic reviews [18, 20]. Each connected set of dots show how (crude) VE
estimates reported in the review varies when imperfect sensitivity and specificity are assumed. Black dots on the grey
diagnoal line denote the original VEs reported in the reviews (where sensitivity = specificity = 1) and coloured dots
show the estimated VE considering potential misclassification.

then be converted VE (in the logistic regression model, the linear coefficient for vaccination history corresponds to151

log(1−VE)).152

In this situation, the likelihood function now reflects a regression model and thus the bias-corrected estimate in the153

univariate analysis (Equation (5)) is no longer applicable. We therefore need to develop a separate multivariate TND154

study framework to correct for bias in multivariate analysis. Suppose that covariates ξ = (ξ1, ξ2, ..., ξn) are included155

in the model, and that ξ1 corresponds to vaccination history (1: vaccinated, 0: unvaccinated). ξ is expected to have a156

certain distribution over the total population N , and let us denote the frequency density of covariates ξ by N(ξ), where157 ∫
N(ξ)dξ = N . Let ρ1(ξ) and ρ0(ξ) be the conditional probabilities that an individual is included in the study with158

TD and ND, respectively, given covariates ξ. Incorporating misclassification, the probability of an individual i with159

covariates ξi being included and tested positive/negative will be160

ρ+(ξi) = αρ1(ξi) + (1− β)ρ0(ξi)

ρ−(ξi) = (1− α)ρ1(ξi) + βρ0(ξi)
(9)

Assuming that disease incidences follow Poisson distributions, as in the univariate case, we can obtain the probability161

density of observing data D = {Zi, ξi}i=1,2,...S (Zi denotes the test result of individual i) as162

P(D) = Pois(S+;λ+) Pois(S−;λ−)
∏
i∈{+}

ρ+(ξi)N(ξi)

λ+

∏
i∈{−}

ρ−(ξi)N(ξi)

λ−
. (10)

where λ+ and λ− are the mean incidence of being included in the study and tested positive/negative: λ± =163 ∫
ρ±(ξ)N(ξ)dξ. The first two Poisson distributions on the right-hand side of Eq. (10) give the probability that164

the study yields S+ positive and S− negative subjects. The products that follow represent the probability density for165

covariates ξi observed in the positive/negative group.166
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Suppose that we model this system using a parameter set θ. We could directly model ρ1(ξi; θ) and ρ0(ξi; θ); however,167

it is often more convenient to model the binomial probability for the true outcome p1(ξi) = ρ1(ξi)
ρ(ξi)

and p0(ξi) = ρ0(ξi)
ρ(ξi)

,168

where ρ(ξi) = ρ1(ξi) + ρ0(ξi) = ρ+(ξi) + ρ−(ξi) is the probability density of being included in the study given169

covariates ξ, because the absolute scale of incidence is rarely of a primary concern. The binomial probabilities for the170

respective observed outcomes (with errors) are then given by:171

π+(ξi; θ) = αp1(ξi; θ) + (1− β)p0(ξi; θ)

π−(ξi; θ) = (1− α)p1(ξi; θ) + βp0(ξi; θ)
(11)

Let us use parameter set θ to model the binomial probabilities π+ (and π−) and assume that another set of parameters η172

(nuisance parameters) characterise ρ(ξi). Then our objective is reduced to the estimation of θ and η.173

Rearranging Equation (10), we get the joint likelihood for θ and η:174

L(θ, η;D) =

(
S

S+

)
Pois(S;λ(η))

S∏
i=1

ρ(ξi; η)N(ξi)

λ(η)

S∏
i=1

πZi(ξi; θ), (12)

where λ(η) is the overall mean incidence: λ(η) =
∫
ρ(ξ; η)N(ξ)dξ. The factor outside the products on the right-hand175

side of Eq. (12) is the probability that the study yields S subjects of which S+ are positives and S− are negatives. The176

first product is the probability density for covariates ξi observed in data D, and the second product is the binomial177

probabilities for the test results Zi. When only θ is of our concern, we can obtain the MLE for θ by maximising178

L(θ;D) =

S∏
i=1

πZi(ξi; θ) =
∏
i∈{+}

[αp1(ξi; θ) + (1− β)p0(ξi; θ)]
∏
i∈{−}

[(1− α)p1(ξi; θ) + βp0(ξi; θ)], (13)

as θ and η are separate in the likelihood (12). With the estimate θ∗, the VE estimate for an individual with covariates179

ξ2:n = (ξ2, ξ3, ..., ξn) is given as (1 - odds ratio):180

VE(ξ2:n) = 1− p1(ξ1 = 1, ξ2:n; θ∗)

p0(ξ1 = 1, ξ2:n; θ∗)

/
p1(ξ1 = 0, ξ2:n; θ∗)

p0(ξ1 = 0, ξ2:n; θ∗)
. (14)

2.3.2 Direct likelihood method for the logistic regression model181

The logistic regression model is well-suited for modelling binomial probabilities p1 and p0. The log-odds (log(p1p0 )) is182

characterised by a linear predictor as:183

log

(
p1(ξ; θ)

p0(ξ; θ)

)
= θ0 + θ1ξ

1 + · · ·+ θnξ
n. (15)

In the logistic regression model where covariate ξ1 indicates vaccination history, the corresponding coefficient θ1184

gives the VE estimate: VE = 1− exp(θ1). Due to the assumed linearity, the estimated VE value is common across185

individuals regardless of covariates ξ2:n.186

We can employ the direct likelihood method by combining Equations (13) and (15). The usual logistic regression187

optimises θ by assuming that the test results follow Bernouli distributions Zi ∼ Bernouli(p1(ξi; θ)) (Zi = 1 for188

positive test results and 0 for negative). To correct the misclassification bias, we instead need to use the modified189

probabilities given by Eq. (11) to construct the likelihood accounting for diagnostic error, i.e.,190

Zi ∼ Bernouli(π+(ξi; θ)) = Bernouli(αp1(ξi; θ) + (1− β)p0(ξi; θ)). (16)

Parameter θ is estimated by directly maximising the probability of observing {Zi} based on Eq. (16)191

Note that as long as the binomial probability is the modelling target, other type of models (e.g. probit model) could also192

be employed under a similar framework.193
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2.3.3 Multiple overimputation method to be combined with existing tools194

The direct likelihood method presented in the previous section is the most rigorous MLE approach and would therefore195

be preferable whenever possible. However, it is often technically-demanding to implement such approaches as it involves196

re-defining the likelihood; if we wanted to use existing tools for logistic regression (or other models), for example,197

we would need to modify the internal algorithm specifying the likelihood computation. To ensure that researchers198

are able to employ correction methods without reprogramming the underlying software algorithms, we also propose199

another method, which employs a multiple overimputation (MO) framework [12] to account for misclassification.200

Whereas multiple imputation only considers missing values, MO is proposed as a more general concept which includes201

overwriting mismeasured values in the dataset by imputation. In our multivariate bias correction method, test results in202

the dataset (which are potentially misclassified) are randomly overimputed.203

Let M be an existing estimation software tool whose likelihood specification cannot be reprogrammed. Given data204

d = {zi, ξi}i=1,2,...S , where zi denotes the true disease state (z = 1 for TD and z = 0 for ND), M would be expected205

to return at least the following two elements: the point estimate of VE (εd) and the predicted binomial probability p̂1(ξi)206

for each individual i. From the original observed dataset D, imputed datasets {D̃j} = {D̃1, D̃2, ..., D̃J} are generated207

by the following procedure.208

1. For i = 1, 2, ..., S, impute disease state z̃ji based on the test result Zi. Each z̃ji is sampled from a Bernouli209

distribution conditional to Zi:210

z̃ji ∼
{

Bernouli (1− ϕ̃i+) (Zi = 1)

Bernouli (ϕ̃i−) (Zi = 0)
. (17)

ϕ̃i+ and ϕ̃i− are estimated probabilities that the test result for individual i is incorrect (i.e., zi 6= Zi) given Zi.211

The sampling procedure (17) is therefore interpreted as the test result Zi being "flipped" at a probability ϕ̃i+212

or ϕ̃i−. Later we will discuss possible procedures to obtain these probabilities.213

2. Apply M to D̃j = {z̃ji , ξi} to yield a point estimate of VE (εj).214

3. Repeat 1., 2. for j = 1, 2, ..., J to yield MO estimates {εj}j=1,...J .215

Once MO estimates {εj} are obtained, the pooled estimate and confidence intervals of VE are obtained by appropriate216

summary statistics, e.g., Rubin’s rules. As long as the estimated "flipping" probabilities ϕ̃i± = (ϕ̃i+, ϕ̃i−) are well217

chosen, this MO procedure should provide an unbiased estimate of VE with a sufficiently large number of iterations J .218

There can be multiple candidates for the flipping probability estimate ϕ̃i±. Here we discuss two possible options:219

parametric bootstrapping and the expectation-maximisation (EM) algorithm. Our simulation showed that parametric220

bootstrapping is preferable (see the supplementary document).221

(i) Parametric bootstrapping222

The simplest option to estimate ϕ̃i± is to use Bayesian probability223

P(zi = Zi|Zi) =


αP(zi = 1)

αP(zi = 1) + (1− β)P(zi = 0)
=

αp1(ξi)

αp1(ξi) + (1− β)p0(ξi)
(Zi = 1)

βP(zi = 0)

(1− α)P(zi = 1) + βP(zi = 0)
=

βp0(ξi)

(1− α)p1(ξi) + βp0(ξi)
(Zi = 0)

(18)

The true binomial probabilities p0(ξi), p1(ξi) are not known, but their estimators are derived with the inverted224

classification matrix in the same manner as Eq. (7). By substituting
[
p1(ξi)
p0(ξi)

]
with C−1

[
π+(ξi)
π−(ξi)

]
, we get225

ϕ̃i+ = 1− P(zi = 1|Zi = 1) =
1− β

α+ β − 1

[
α · π−(ξi)

π+(ξi)
− (1− α)

]
ϕ̃i− = 1− P(zi = 0|Zi = 0) =

1− α
α+ β − 1

[
β · π+(ξi)

π−(ξi)
− (1− β)

] (19)

These probabilities can be computed provided the odds of the test results π+(ξi)
π−(ξi)

. We employ a parametric approach and226

approximate this odds by applying estimation tool M to the original data D; i.e., the predicted binomial probability227
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p̂1(ξi) obtained from D is used as a proxy of π+(ξi). Generally it is not assured that true and observed probabilities228

p1(ξi) and π+(ξi) have the same mechanistic structure captured by M ; however, when our concern is limited to229

the use of model-predicted probabilities to smooth the data D, we may expect for M to provide a sufficiently good230

approximation with realistic test sensitivity and specificity. The above framework can be regarded as a variant of231

parametric bootstrapping methods as MO datasets are generated from data D assuming a parametric model M . The232

whole bias correction procedure is presented in pseudocode (Algorithm 1); a sample R code is also available on GitHub233

(https://github.com/akira-endo/TND-biascorrection/).234

Algorithm 1 Multiple imputation with parametric bootstrapping
Input: D = {Zi, ξi}i=1,2,...S

Fit model M to D to obtain a predictive model π+ = p̂1(ξ)
for j = 1, 2, ..., J do

for i = 1, ..., S do
π+ ← p̂1(ξi) . Predict the binomial probability π+ by model M
z̃ji ← Zi . Copy Zi, and then flip at a probability ϕ to impute z̃ji
if Zi = 1 then

ϕ← 1−β
α+β−1

[
α · 1−π+

π+
− (1− α)

]
u← Unif(0, 1)
if u < ϕ then

z̃ji ← 0
end if

else
ϕ← 1−α

α+β−1

[
β · π+

1−π+
− (1− β)

]
u← Unif(0, 1)
if u < ϕ then

z̃ji ← 1
end if

end if
end for
Fit model M to D̃j = {z̃ji , ξi}i=1,2,...S to estimate parameter εj

end for
Output: MO estimates {εj}j=1,2,...,J

(ii) EM algorithm235

Another possible approach is to use EM algorithm as proposed by Magder et al. [21], where ϕ̃i± can be estimated by236

iterations (see the supplementary document for details). However, in our simulation we found that the performance237

of EM algorithm was inferior to the other two alternatives (direct likelihood and parametric bootstrapping). The238

three methods all provided effectively identical distributions of estimates in most settings, but in some settings the239

EM algorithm produced extreme estimates (VE < 0 or > 1) slightly more often than the other two. We therefore240

recommend parametric bootstrapping as the first choice of bias correction method when the direct likelihood approach241

is inconvenient.242

2.3.4 Simulation of bias correction with parametric bootstrapping243

To assess the performance of this method, we used the same simulation framework as in the univariate analysis (Table244

1). In addition to vaccination history (denoted by ξ1), we consider one categorical and one continuous covariate. Let us245

assume that ξ2 represents the age group (categorical; 1: child, 0: adult) and ξ3 the pre-infection antibody titre against246

TD (continuous). Suppose that the population ratio between children and adults is 1:2, and that ξ3 is scaled so that247

it is standard normally distributed in the population. For simplicity, we assumed that all the covariates are mutually248

independent with regard to the distribution and effects (i.e., no association between covariates and no interaction effects).249

The relative risk of children was set to be 2 and 1.5 for TD and ND, respectively, and a unit increase in the antibody250

titre was assumed to halve the risk of TD (and not to affect the risk of ND). The mean total sample size λ was set251

to be 3,000, and 500 sets of simulation data were generated for each scenario. VE estimates were corrected by the252

parametric bootstrapping approach (the number of iterations J = 100) and were compared with the raw (uncorrected)253

VE estimates.254
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Figure 5 shows the distributions of estimates with and without bias correction in the multivariate setting. Our bias255

correction (parametric bootstrapping) provided unbiased estimates for all the scenarios considered. Overall, biases in256

the uncorrected estimates were larger than those in the univariate setting. In some scenarios, the standard error of the257

bias-corrected estimates was extremely wide. This was not because of the failure of bias correction, but because of258

the uncertainty already introduced before misclassification. The standard errors in those scenarios were very large259

even with perfect test sensitivity and specificity as can be seen in Figure 6. Larger sample size is required to yield260

accurate estimates in those settings, as the information loss due to misclassification will be added on top of the inherent261

uncertainty in the true data.262

Figure 5: Bias correction for simulated data in the multivariate setting. The distributions of bias-corrected (blue) and
uncorrected (red) VE estimates from 500 simulations are compared. Dotted lines denote median and black solid lines
denote the true VE. The parametric bootstrapping bias correction method was used for bias correction.

2.3.5 Increased uncertainty introduced by misclassification263

Although our bias correction methods provide unbiased VE estimates from potentially misclassified test results, the264

resulting uncertainty is larger than that which would be obtained from estimates using the true disease status. In Figure265

6, we compared bias-corrected estimates obtained from misclassified data (by the direct likelihood method) with those266

obtained from the true data (i.e., 100% sensitivity and specificity). Although both estimates are unbiased around the267

true value, the results from the misclassified data exhibit higher variability (by a factor of 1.1-3.0) due to the loss of268

information caused by misdiagnosis. Increased uncertainty due to misclassification should be carefully considered when269

one calculates the power of test-negative design studies. Overestimated test performance may not only underestimate270

the true VE but also lead to overconfidence.271

2.3.6 The number of confounding variables272

We investigated how the bias in uncorrected VE estimates can be affected by the number of confounding variables. In273

addition to the vaccine history ξ1, we added a set of categorical/continuous confounding variables to the model and274

assessed the degree of bias caused by misclassification. The characteristics of the variables were inherited from those in275

Section 2.3.4: categorical variable "age" and continuous variable "pre-infection antibody titre". That is, individuals276

were assigned multiple covariates (e.g., "categorical variable A", "categorical variable B", ..., "continuous variable277
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Figure 6: Uncertainty in VE estimates obtained from the true/misclassified datasets in the multivariate setting. The
distributions of VE estimates from the simulated true (yellow) and misclassified (light blue) data are shown. The direct
likelihood method was employed to correct biases in the misclassified data.

A", "continuous variable B", ...) whose distribution and effect were identical to "age" (for categorical variables) and278

"antibody titre" (for continuous variables) in Section 2.3.4. No interaction between covariates was assumed. The279

covariate set in Section 2.3.4 being baseline (the number of covariates: (vaccine, categorical, continuous) = (1, 1, 1)),280

we employed two more scenarios with a larger number of covariates: (1, 3, 3) and (1, 5, 5).281

The simulation results are presented in Figure 7. Overall, additional confounding variables led to more severe bias in282

the uncorrected VE estimates towards underestimation. As shown in Figure 2A, the degree of bias is strongly affected283

by the case ratio: the ratio between the risk of TD and ND. More confounding variables in a population result in higher284

heterogeneity in individuals’ risk of TD and ND. This may account for the association between the degree of bias and285

the number of confounding variables; more individuals in a highly heterogeneous population may fall in the outer range286

of the case ratio shown in Figure 2A, substantially contributing to the misclassification bias.287

3 Discussion288

Misclassification caused by imperfect diagnostic tests can potentially lead to substantial biases in TND studies. By289

considering the processes involved in VE estimation, we have characterised the degree of bias potentially caused290

by diagnostic misclassification in different parameter settings, finding that VE can be noticeably underestimated,291

particularly when the ratio between TD and ND cases in the study data is unbalanced. To address this potential bias, we292

developed multiple bias correction methods that address test misclassification and provide unbiased VE estimates in293

both univariate and multivariate settings. When the test sensitivity and specificity are known or assumed, those values294

can be used to restore the true VE estimate by a relatively simple statistical procedure. Using simulations, we showed295

that our methods could successfully eliminate the bias in VE estimates obtained from misclassified data, although some296

uncertainty was introduced as a result of the information loss.297

We believe that our methods could therefore enable researchers to address possible misclassification in their data298

and report unbiased VE estimates even when imperfect tests had to be used. Such methods could also help in the299

scaling up of TND studies, as tests with limited performance are usually inexpensive and logistically convenient. Even300
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Figure 7: Bias in raw VE estimates from simulated data in the presence of different numbers of confounding variables.
The distributions in red, purple and blue correspond to uncorrected VE estimates in the presence of 2, 6 and 10
confounding variables in addition to the vaccination history.

when high-performance diagnostic tests including PCR techniques are available, the risk of misdiagnosis may not be301

negligible in certain settings, and our methods could further be used to perform sensitivity analysis to properly address302

the possibility of bias in such cases.303

Although TND is a relatively new study design, first appearing in a publication in 2005 [22], it has gained broad304

popularity and is becoming a standard approach in VE studies. TND is believed to minimise the bias caused by different305

health seeking behaviour of individuals, but one of the largest factors that have contributed to its widespread use is the306

fact that data collection can be completed within clinical setups [1]. Whereas cohort or case-control studies usually307

require additional efforts including follow up or recruitment of non-patients, TND studies only involve patients visiting308

healthcare facilities with suspects of certain diseases and thus routinely collected clinical data can be easily adapted for309

analysis. For diseases of which suspected patients routinely undergo lab tests, TND may be one of the most convenient310

options to generate epidemiological insights into the effect of specific prevention/treatment. VE studies of influenza, for311

which TND is most frequently used, often use PCR as a diagnostic tool for better data quality [20]. However, such312

studies usually involve intensive effort and cost, and thus may only be feasible by large-scale research bodies. Our313

bias correction methods may open a possibility of wider use of clinical data, which could potentially provide rich314

epidemiological insights, especially in settings where rapid tests are routinely used for diagnosis. For example, rapid315

influenza diagnostic tests are routinely used for inpatient clinics and hospitals in Japan, and such clinical data have316

facilitated a number of TND studies [23, 24, 25, 26, 27, 28]. Such studies based on rapid tests could benefit from317

our methods, as it would provide strong support for the validity of their estimates. Our methods may also be useful318

in resource limited settings or for diseases without high-performance diagnostic tools. Even in resourceful settings319

where high-performance tests are available, the slight possibility of misclassification might not always be neglected.320

Although PCR tests are currently used as a gold-standard for influenza diagnosis, their sensitivity and specificity may321

not be exact 100%; especially, the sensitivity of the test depends not only on microbiological technique but also on the322

quality of swab samples from patients. In addition, it is suggested that the sensitivity of PCR tests may change during323

the time course of infection [29] and be sufficiently high only during a limited time window. Our simulation study324

also indicated that a high heterogeneity in individual characteristics in study samples might increase the bias in the325
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VE estimate. Our methods could enable researchers to implement sensitivity analysis by assuming the possible test326

sensitivity and specificity in such cases.327

Our bias correction methods are also intended to be reasonably straightforward for researchers to introduce. Existing328

estimation tools including software libraries and packages are often used in epidemiological analyses, and most of them329

have specific requirements for data input and output. Modifying the procedure employed by such tools in a way which330

is unexpected by the authors is usually impossible or requires advanced technical skills including reprogramming of331

the underlying algorithms. Incorporating the MO approach, our parametric bootstrapping bias correction method only332

involves data manipulation and does not require modification of the estimation algorithm. The only inputs required to333

produce MO datasets are the assumed test sensitivity and specificity (α, β) and the model-predicted binomial probability334

for the test result (π+) for each individual. Once multiple sets of data are randomly generated, any type of analysis can335

be performed as long as they produce numerical estimates to be summarised over the MO datasets. Of particular note is336

that our methods for multivariate analysis (including the direct likelihood method) allow stratification of sensitivity and337

specificity among individuals. Therefore, the users can employ more complex misclassification mechanisms including338

time-varying test performance or test performance affected by individual characteristics. Datasets with a mixture of339

different diagnostic tools [3, 30] can also be handled by applying different values for each test.340

There are some limitations to our study. We only focused on misclassification of diagnosis (i.e., misclassified outcomes)341

and did not consider potential misclassification of covariates (e.g., vaccine history and other confounding variables),342

which is another important type of misclassification in TND studies [10]. Further, it is generally not easy to plausibly343

estimate the sensitivity and specificity for measurement of covariates (e.g. recall bias), which must be known or assumed344

to implement bias correction. However, if reliable estimates are available, an extension of our approach may yield345

bias-corrected VE estimates in the presence of covariate misclassification. Such consideration remains to be discussed346

in future work. Moreover, to keep our focus only on diagnostic misclassification, our methods rested on the assumption347

that other sources of bias in TND studies are nonexistent or properly addressed. Potential sources of bias in TND348

studies have been discussed elsewhere [13, 31], and the researchers conducting TND studies need to carefully consider349

the possibility of such biases in addition to the diagnostic misclassification. Lastly, it must be noted that our methods350

depend on the assumed test sensitivity and specificity, and that misspecifying those values can result in an improper351

correction. The sensitivity and specificity of tests are usually reported by manufacturers in a comparison of the test352

results with gold-standard tests; however, when such gold-standard tests themselves are not fully reliable or when no353

available test has satisfactory performance to be regarded as gold-standard, specifying sensitivity and specificity of354

a test is in principle impossible. Further, test performances reported by manufacturers might lack sufficient sample355

size or might not be identical to those in the actual study settings. Use of composite reference standards [32, 33] or356

external/internal validation approaches [34] may help overcome these problems.357

Although the presence of imperfect diagnosis limits the quality of clinical data, data with such uncertainty can still hold358

useful information, and this information can be transformed into useful insights by appropriate statistical processing.359

Our bias correction methods were developed primarily for TND studies, but a similar approach could be applied to360

broader classes of estimation problems with misclassification. The value of routinely collected data in healthcare361

settings has become widely recognised with the advancement of data infrastructure, and we believe our methods could362

help support the effective use of such data.363

4 Conclusion364

Bias correction methods for the test-negative design studies were developed to address potential misclassification bias365

due to imperfect tests.366

Appendix367

Maximum likelihood estimates and confidence intervals in the univariate setting368

Expanding Equation (4) in the main text, we get369

L(γ, δ, λV , λU ;D)

=
[αγδ + (1− β)]XV [(1− α)γδ + β]YV [αδ + (1− β)]XU [(1− α)δ + β]YUλSVV λSUU

(1 + δ)SV (1 + δ)SUXV !YV !XU !YU ! exp
(

1+γδ
1+δ λV

)
exp (λU )

, (20)

where SV = XV + YV and SU = XU + YU .370
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For mathematical convenience, we change the variable λV to λ
′

V = 1+γδ
1+δ λV . Let l = logL(γ, δ, λ

′

V , λU ;X). Partial371

derivatives of l are372

∂l

∂γ
=

αδXV

αγδ + (1− β)
+

(1− α)δYV
(1− α)γδ + β

− δSV
1 + γδ

∂l

∂δ
=

αγXV

αγδ + (1− β)
+

(1− α)γYV
(1− α)γδ + β

+
αXU

αδ + (1− β)
+

(1− α)YU
(1− α)δ + β

− γSV
1 + γδ

− SU
1 + δ

∂l

∂λ
′
V

=
SV
λ
′
V

− 1

∂l

∂λU
=
SU
λU
− 1

(21)

Equation (21) gives the maximum likelihood estimates:373

γ∗ =
XV − 1−β

β YV

YV − 1−α
α XV

·
YU − 1−α

α XU

XU − 1−β
β YU

δ∗ =
β

α
·
XU − 1−β

β YU

YU − 1−α
α XU

λ
′∗
V = SV
λ∗U = SU

(22)

The confidence intervals for parameters can be constructed using the Fisher’s information matrix from Equation (21).374

λ
′

V and λU are independent from other parameters and375

Var(λ
′

V ) = − ∂2l

∂λ
′2
V

=
SV
λ
′2
V

− ∂2l

∂λ2U
=
SU
λ2U

(23)

We log-transform γ and δ for mathematical convenience. Noting that ∂y
∂(log x) = x ∂y∂x , we get376

− ∂2l

∂(log(γ))2
=

γδ

(1 + γδ)2
SV −

α(1− β)γδ

[αγδ + (1− β)]2
XV −

(1− α)βγδ

[(1− α)γδ + β]2
YV

− ∂2l

∂ log γ∂ log δ
=

γδ

(1 + γδ)2
SV −

α(1− β)γδ

[αγδ + (1− β)]2
XV −

(1− α)βγδ

[(1− α)γδ + β]2
YV

− ∂2l

∂(log δ)2
=

γδ

(1 + γδ)2
SV −

α(1− β)γδ

[αγδ + (1− β)]2
XV −

(1− α)βγδ

[(1− α)γδ + β]2
YV

+
δ

(1 + δ)2
SU −

α(1− β)δ

[αδ + (1− β)]2
XU −

(1− α)βδ

[(1− α)δ + β]2
YU

(24)

With the parameter values estimated in Eq. (22), we get the following information matrix377


xV yV
SV

[
1− SV

(
α(1−β)
XV

+ (1−α)β
YV

)]
xV yV
SV

[
1− SV

(
α(1−β)
XV

+ (1−α)β
YV

)]
xV yV
SV

[
1− SV

(
α(1−β)
XV

+ (1−α)β
YV

)]
xV yV
SV

[
1− SV

(
α(1−β)
XV

+ (1−α)β
YV

)]
+ xUyU

SU

[
1− SU

(
α(1−β)
XU

+ (1−α)β
YU

)]


where xξ = 1
c [βXξ − (1− β)Yξ] and yξ = 1

c [αYξ − (1− α)Xξ] are the true case counts (without misclassification)378

for ξ = V,U . Let pV = xV /(xV + yV ) and pU = xU/(xU + yU ) be the corresponding true binomial probabilities.379
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The inverse of the information matrix provides variance of estimates: in particular, for log γ we get380

Var(log γ∗) =
SV
xV yV

· 1[
1−

(
α(1−β)
πV

+ (1−α)β
1−πV

)] +
SU
xUyU

· 1[
1−

(
α(1−β)
πU

+ (1−α)β
1−πU

)]
=

SV
xV yV

· πV (1− πV )

(1− πV − (1− α))(πV − (1− β))
+

SU
xUyU

· πU (1− πU )

(1− πU − (1− α)(πU − (1− β))

=
c2

SV

πV (1− πV )

(1− πV − (1− α))2(πV − (1− β))2
+

c2

SU

πU (1− πU )

(1− πU − (1− α))2(πU − (1− β))2
.

(25)

We can relate this to the true standard error that would be obtained with perfect tests,381

SD(log γtrue) =

√
1

SV pV (1− pV )
+

1

SUpU (1− pU )
=

√
σV 2

SV
+
σU 2

SU
, (26)

or to the observed standard error (without correction),382

SD(log γraw) =

√
1

SV πV (1− πV )
+

1

SUπU (1− πU )
=

√
ΣV

2

SV
+

ΣU
2

SU
, (27)

where σV = [pV (1 − pV )]−1/2 and σU = [pU (1 − pU )]−1/2 are the components of the true standard error and383

ΣV = [πV (1− πV )]−1/2 and ΣU = [πU (1− πU )]−1/2 are those of uncorrected standard error. We get384

σ∗ = SD(log(γ∗)) =

√√√√σ2
V

SV
· 1(

1− 1−α
1−πV

)(
1− 1−β

πV

) +
σ2
U

SU
· 1(

1− 1−α
1−πU

)(
1− 1−β

πU

)
=

1

c

√
Σ2
V

SV
·
(
πV (1− πV )

pV (1− pV )

)2

+
Σ2
U

SU
·
(
πU (1− πU )

pU (1− pU )

)2

.

(28)

This equation indicates that the confidence intervals diverge when the true outcome is bipolarised (pV , pU ' 0 or 1).385
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