
M
ED

IC
A

L
SC

IE
N

CE
S

Spatial and temporal dynamics of superspreading
events in the 2014–2015 West Africa Ebola epidemic
Max S. Y. Laua,1, Benjamin Douglas Dalzielb,c, Sebastian Funkd, Amanda McClellande, Amanda Tiffanyf, Steven Rileyg,
C. Jessica E. Metcalfa, and Bryan T. Grenfella,h

aDepartment of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544; bDepartment of Integrative Biology, Oregon State University,
Corvallis, OR 97331; cDepartment of Mathematics, Oregon State University, Corvallis, OR 97331; dCentre for the Mathematical Modelling of Infectious
Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom; eInternational Federation of Red Cross and Red Crescent
Societies, CH-1211 Geneva 19, Switzerland; fEpicentre, CH-1211 Geneva 6, Switzerland; gMedical Research Council Centre for Outbreak Analysis and
Modelling, Department Infectious Disease Epidemiology, Imperial College London, London SW7 2AZ, United Kingdom; and hFogarty International Center,
National Institutes of Health, Bethesda, MD 20892

Edited by David Cox, Nuffield College, Oxford, United Kingdom, and approved January 5, 2017 (received for review September 8, 2016)

The unprecedented scale of the Ebola outbreak in Western
Africa (2014–2015) has prompted an explosion of efforts to
understand the transmission dynamics of the virus and to ana-
lyze the performance of possible containment strategies. Mod-
els have focused primarily on the reproductive numbers of the
disease that represent the average number of secondary infec-
tions produced by a random infectious individual. However,
these population-level estimates may conflate important sys-
tematic variation in the number of cases generated by infected
individuals, particularly found in spatially localized transmission
and superspreading events. Although superspreading features
prominently in first-hand narratives of Ebola transmission, its
dynamics have not been systematically characterized, hindering
refinements of future epidemic predictions and explorations of
targeted interventions. We used Bayesian model inference to inte-
grate individual-level spatial information with other epidemio-
logical data of community-based (undetected within clinical-care
systems) cases and to explicitly infer distribution of the cases gen-
erated by each infected individual. Our results show that super-
spreaders play a key role in sustaining onward transmission of
the epidemic, and they are responsible for a significant propor-
tion (∼61%) of the infections. Our results also suggest age as a
key demographic predictor for superspreading. We also show that
community-based cases may have progressed more rapidly than
those notified within clinical-care systems, and most transmission
events occurred in a relatively short distance (with median value
of 2.51 km). Our results stress the importance of characterizing
superspreading of Ebola, enhance our current understanding of
its spatiotemporal dynamics, and highlight the potential impor-
tance of targeted control measures.
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The outbreak size of the 2014 Ebola virus (EBOV) epidemic
in Western Africa was unprecedented, and control measures

failed to contain the epidemic at its early rapidly growing stage
(1, 2). Mathematical models played a key role in inferring the
transmission dynamics of EBOV (3). Modeling work succeeded
in inferring, in particular, the basic reproductive number R0 (and
the time-varying reproductive number, Rt ), which represents the
average number of secondary cases that may be generated by a
given infectious case (e.g., refs. 4–6). Although these parameters
encapsulate knowledge about the average transmission potential
of the epidemic at the population level, they fail to reflect indi-
vidual variation in transmission, which may be more informative
for devising targeted control measures.

An important phenomenon in disease transmission is so-called
superspreading, in which certain individuals (i.e., superspread-
ers) disproportionately infect a large number of secondary cases
relative to an “average” infectious individual (whose infectiv-
ity may be well-represented by Rt ). Mathematically, the dis-
tribution of secondary cases is given by the so-called offspring

distribution of the virus. The offspring distribution describes not
only the average number of new infections, but also the probabil-
ity that any one infectious individual generated a large or small
number of secondary cases. When the offspring distribution has
a large right tail, the probability of superspreading events is high.
This phenomenon was a key driver of the severe acute respira-
tory syndrome (SARS) outbreak in 2003 (7) and the more recent
Middle East respiratory syndrome (MERS) outbreaks, starting
in 2012 (8). Quantifying superspreading is a key step for refining
prediction of future epidemics; also, identifying associated risk
factors would facilitate implementation of targeted control mea-
sures, which may outperform population-level measures (9).

Although contact-tracing data has revealed superspreading
of EBOV (10, 11), systematic understanding of how EBOV
superspreading events varied over space and time is still lack-
ing. For instance, it is unclear how the role of EBOV super-
spreading varies over the course of the outbreak. We aimed
to answer, primarily in a spatiotemporal setting, (i) how super-
spreading may have impacted overall transmission dynamics, and
(ii) what the potential drivers of superspreading are. We attacked
these problems by analyzing a dataset with individual-level spa-
tial data (to the level of individual houses; Study Data). Such
community-based surveillance data offer a unique window to
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study localized transmissions of EBOV and complement for-
mal surveillance by detecting cases that did not interface with
clinical care. In this work, we built an age-specific spatiotem-
poral framework, which allowed us to explicitly infer the prob-
ability distribution of the number of new cases generated by
each infected individual (hereafter, offspring distribution). This
framework was applied to the community-based EBOV case
dataset and deployed to infer transmission dynamics and identify
superspreaders. Specifically, we used Bayesian inferential tech-
niques to synthesize individual-level spatial data (i.e., GPS coor-
dinates), age data, symptoms onset time, and burial time (Study
Data), and to impute unobserved infection time and transmission
network (Materials and Methods and SI Text).

Study Data
We analyzed a community-based dataset collected from the Safe
and Dignified Burials program conducted by the International
Federation of Red Cross, between October 20, 2014, and March
30, 2015, in Western Area (which comprises the capital Freetown
and its surrounding area) in Sierra Leone. These data contain
GPS locations (collected by mobile phones) of where the bodies
of 200 dead who tested positive for Ebola were collected (typi-
cally at their homes). Age, sex, time of burial (which was usually
performed within 24 h of death), and symptom onset time were
also recorded. Symptom onset time was reported retrospectively
by next of kin.

Results
Natural History Parameters. We estimated that R0 has median
value 2.39, with 95% credible interval (C.I.) of [2.05, 2.84]
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Fig. 1. Estimates of reproductive number. (A) Posterior distribution of the
basic reproductive number, R0. (B) Posterior distribution of the weekly effec-
tive reproductive number, Rt. Bars represent 95% C.I., and red line connects
the medians.
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Fig. 2. (A) Spatial distribution of mean number of offspring resulting from
initial cases at the individual level. An infection is classified as an index case
if it has a posterior probability of importation (i.e., not infected by any cases
in the data)>0.5; otherwise, it is classified as a secondary case. Lat, latitude;
Lon, longitude. (B) Distribution of mean number of offspring by different
sources of infection. (C) Proportion of infected individuals who are direct
and indirect descendants of the first five superspreaders (i.e., first five indi-
viduals with highest number of mean offspring; note that the choice of five
is arbitrary here). “Any” includes superspreaders who were also the index
cases (i.e., the roots of transmission trees).

(Fig. 1A). We also estimated the time-varying reproductive num-
ber Rt (Fig. 1B). The incubation period was estimated to be
6.74 d [1.29, 16.21]. These estimates are broadly consistent with
what have been reported (3, 12).

The mean of infectious period (i.e., duration from symp-
toms onset to death/burial) was estimated to be 3.9 d [3.75,
4.0]. Because the transmission tree and times of infection were
imputed (Materials and Methods), we were also able to infer
the mean generation time of EBOV, which was estimated to be
10.9 d [9.25, 13.01]. Both estimates were lower than that esti-
mated from cases detected within the clinical care system [e.g.,
mean infectious period 8 d estimated for patients who received
clinical care (13) and mean generation time 15.3 d estimated
by the WHO (1)]. These discrepancies potentially highlight sys-
tematic differences between community-based cases and cases
notified in clinical care systems, with terminal community-based
cases progressing significantly more rapidly.
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Fig. 3. Spatial and temporal dependence of superspreading. (A) Reported
weekly deaths and inferred mean offspring distributions and the corre-
sponding empirical estimates of k at different time periods. The whole time
period is divided into five periods−that is, period 1, from the time of first
observation to the time of epidemic peak tpeak; period 2, (tpeak, tpeak +20 d);
period 3, (tpeak +20, tpeak +50); period 4, (tpeak +50, tpeak +100); and period
5, from tpeak + 100 to the time of last observation. Such a dividing was used
so that we could use the peak time as a reference point and ensure a similar
number of cases in most intervals. (B) Distribution of distance of transmis-
sion for all infector–infected pairs. Black dotted line represents the median

Superspreading in Space and Time. Fig. 2 A and B show a clear
asymmetry in the average number of “offspring” at the individ-
ual level, quantifying the impact of superspreading. In particular,
it was observed that most secondary cases generated less than
one offspring on average. Thus, the epidemic growth appeared
to be fueled mostly by only a few superspreaders (i.e., the
outliers in the boxplot). A common empirical measure of degree-
of-transmission heterogeneity and superspreading is the disper-
sion parameter k , assuming that the offspring distribution is a
negative binomial with variance σ2 =µ(1 + µ/k), where µ is
the mean (9). Generally speaking, a lower k represents a higher
degree of transmission heterogeneity and superspreading; and
k < 1 implies substantial superspreading (compared with a geo-
metric distribution, for which k = 1). Our empirical estimate of k
of our inferred mean offspring distribution (including index and
secondary) was 0.37, and it is higher (i.e., implies less heterogene-
ity) than an estimate from an observational study in which k was
estimated to be 0.16 (10, 11). This discrepancy in the estimate
of κ suggests that our estimate of the degree of superspreading
may be conservative (Sensitivity Analysis), although it should be
noted their estimate was made based on a study in a different
geographical region and time frame. By sampling probabilisti-
cally consistent transmission networks among infected individu-
als (Materials and Methods), we were able to identify whether a
case was a descendent of superspreaders by performing a back-
ward search of sampled transmission tree from the case−for each
case, we first identified its (most recent) direct infector (IF1)
from the sampled tree, from where we could subsequently iden-
tify the infector of IF1; We continued this backward searching
until we reached an index case [i.e., the root of a (sub)tree]; a
superspreader is an ancestor of this case if it happens to be one of
the infectors during the backward searching. Fig. 2C shows that
a few superspreaders (∼3% of all of the cases) were responsi-
ble, either directly or indirectly, for a substantial proportion (with
median 61%) of all of the cases generated, highlighting the key
role of these superspreaders in driving the epidemic growth−had
the superspreaders been identified and quarantined promptly, a
majority of the infections could have been prevented.

In Fig. 3A, we show the time dependence of superspreading,
illustrating that superspreading becomes relatively more impor-
tant over time (i.e., within ∼100 d after the epidemic peak). This
figure suggests that, after the initial period of fast growth of the
epidemic (i.e., time before peak), superspreaders may be crucial
to sustaining and fueling epidemic growth and also prolonging
the epidemic duration. Near the end of the epidemic (period 5 in
Fig. 3A), most cases did not spread, and superspreading was non-
significant, as reflected by k > 1. Fig. 3B shows that most of the
transmission (including superspreading) occurred over relatively
short distances (median 2.51 km), indicating that transmission
tends to take place at the local community level.

Heterogeneity of Infectiousness by Age. Although superspreading
in EBOV was evident and may be partly attributed to unsafe
burial practice during the early stage of the outbreak (14),
other drivers (e.g., social contact pattern) of this process remain
unclear. In Fig. 4A, as expected, the infectious period had a clear
positive relationship with mean offspring number. Despite the
clear relationship between infectious period and the magnitude
of superspreading, this covariate cannot be used as a predictor
of superspreading, because it is not known a priori. More impor-
tantly, there is a significant difference in instantaneous infectious
hazard exerted by different age groups (Fig. 4B)−cases <15 and
>45 appear to have higher instantaneous transmissibility. Our

(2.51 km) of the distribution. Red dotted line represents the median
(2.61 km) of the subdistribution in which the infectors are superspreaders
(defined as those who has mean offspring more than five here).
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Fig. 4. Heterogeneity of infectiousness in age. (A) Relation between mean
offspring and infectious period. It is worth noting that here an infectious
period is strictly referred to the mean of the posterior samples of imputed
infectious period of an individual, rather than the assumed universal infec-
tious period distribution. (B) Instantaneous risk exerted by different age
groups.

results suggest that the combination of certain age groups (who
have high instantaneous hazard) with a long infectious period
(at the right tail of the infectious period distribution) constitutes
a key driver of superspreading. The discrepancy of transmissi-
bility in age may be rooted in social contact structure (15) or
virological linkages (e.g., potential systematic variation among
infected individuals) that cannot be established solely by using
epidemiological data (16).

Sensitivity Analysis. Underreporting is a ubiquitous feature of
epidemiological data (17, 18). In this section, we explore the
effect of underreporting on our analysis under two probable sce-
narios: (i) All unreported cases were circulating in the com-
munity and not hospitalized; and (ii) all unreported cases were
hospitalized and therefore not reported in our database. In both
scenarios, we tested with constant underreporting rates, across
the whole study period and region, ranging from a very low
(10%) to a very high one (90%). Doing so allowed us to inves-
tigate the probable lower and upper bound of our estimates. We
also tested with time-varying underreporting rates in both sce-
narios. Details of how to include underreported cases are pro-
vided in Materials and Methods.

We focused on investigating the effect on k , R0 and trans-
mission distance. Fig. 5A shows that, in general, superspread-

ing should have been even more prominent in the presence of
underreporting, compared with our estimate. Such a discrepancy
suggests that our estimated degree of superspreading is poten-
tially (at most moderately) conservative−for example, at a con-
stant underreporting rate of 90%, the median of k is ∼0.27 in
scenario 2, moderately lower than 0.37 estimated from the base-
line analysis. Underreporting appears to have limited effect on
the estimated R0, at least up to underreporting rate of 80% (Fig.
5B). Fig. 5 C and D suggest that, although we can be relatively
confident about the most probable transmission distance, it is
almost certain that we missed some long-distance transmission
events. Assuming a time-varying underreporting rate gives rise to
similar results (Fig. S1).

Our model assumed an isotropic spatial dispersal (Materials
and Methods). Spatial infectivity, however, may depend on the
population density−in particular, it may exhibit a gravity-model
pattern that is observed in a few disease systems, including Ebola
(19–21). Such gravity models scale the distance-dependent infec-
tious challenge acting on the recipients, by incorporating a “local
susceptibility” as a function of the population size of the receiv-
ing area−that is, a more populated place is prone to a greater
movement influx (of cases) and hence a greater effective infec-
tious challenge. Based on the underlying principles of gravity
models, we also investigated the effect of population density
on these estimates (Fig. S2), using two different formulations
in specifying the local susceptibility. First, without taking into
account the population density, we may have missed identify-
ing a few prominent superspreaders at the right tail of the off-
spring distribution and, hence, underestimated superspreading
(Fig. S2A). Conversely, it was shown that population density
has no significant effect on R0 (Fig. S2B). Finally, assuming an
isotropic dispersal may have slightly biased toward the longer
transmission distance (Fig. S2C). Nevertheless, the effects were
nonsignificant, mainly due to relatively homogeneous population
density where the cases resided (Fig. S3). The parameterization
of the incubation period and infectious period were also tested,
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Fig. 5. Effect of constant underreporting rates on estimates of transmis-
sion dynamics. (A) Estimates of k. Bars represent the 95% C.I., and dots
represent the median values. (B) Estimates of R0. (C) Estimates of most prob-
able distance of transmission. (D) Estimates of median transmission distance.
Dotted lines represent the corresponding estimates using our data. At each
underreporting rate, 10 independent simulations and corresponding infer-
ence were performed (Materials and Methods).
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showing very similar estimates as the baseline case (Tables S1
and S2). We also tested alternative parameterization of priors in
Table S3, giving virtually identical results compared with those
obtained in the baseline case (see also Materials and Methods).

Discussion
Superspreading is a core process for the transmission of many
infections (7, 8). However, the importance of superspreading in
driving epidemics varies with context. For instance, its impact
depends on how it persists over the course of an epidemic. Quan-
tifying superspreading and identifying scenarios where it is more
likely to occur can facilitate refining future epidemics predictions
and help in devising targeted intervention strategies that may
outperform population-level control measures (9). To date, a sys-
tematic understanding of how EBOV has been (super)spreading
in the recent outbreak in Western Africa is lacking, particularly
in terms of individual-level covariates, and across the spatiotem-
poral setting. The key contributions of this work are to highlight
and quantify the importance of superspreading and to show that
it is in some senses systematic.

Community-based surveillance data offer a valuable oppor-
tunity to study superspreading, by focusing on nonhospitalized
cases that may have been involved in superspreading events
and not detected by formal surveillance. Here, we introduce
a continuous-time spatiotemporal model that integrates indi-
vidual spatial information with other epidemiological infor-
mation of community-based cases and deploy it to quantify
superspreading and its drivers for EBOV. Our framework
enabled us to sample likely realizations of the unobserved trans-
mission network among cases from which the offspring distribu-
tion of each case could be inferred, providing explicitly a machin-
ery for understanding superspreading in space and time.

Our analysis is broadly consistent with previous work, indi-
cating values of R0 of 2.39 [2.05, 2.84] for the outbreak in
Sierra Leone (in particular, close to the 2.53 estimated in ref.
22). Our results show that EBOV exhibited a prominent super-
spreading pattern shared by SARS and MERS (7, 8, 23) [e.g.,
k was estimated to be 0.16 for SARS (9)], which reinforces the
finding that superspreading occurred during the recent EBOV
outbreak (10).

We also extended previous analyses by showing that a substan-
tial proportion of secondary cases were either direct or indirect
descendants of a small number of superspreaders, underscoring
the importance of superspreading in driving the epidemic−that
is, had the superspreaders been identified and quarantined
promptly, ∼61% of the infections could have been prevented.
Furthermore, we show that superspreaders may have particular
importance in driving and sustaining the epidemic progression
over the course of the outbreak. The increasing relative impor-
tance of superspreading over the later stages of the outbreak
(Fig. 3A) is consistent with the rising availability of hospital beds
(5)−that is, later in the outbreak, most infected individuals were
able to get a bed at an Ebola treatment center (ETC) and largely
did not further transmit; as a result, those superspreaders in the
community who did not make it to ETCs may have played an
increasingly important role in sustaining the epidemic by gener-
ating more secondary cases. Our results also suggest that Ebola
transmission may have disproportionately affected the local com-
munity, because we estimate a relatively short transmission dis-
tance. This estimated distance has implications for implemen-
tation of regional control measures. Identifying individuals who
have the profile (socially or culturally) of being at greater risk
of causing superspreading events is crucial for implementing tar-
geted interventions.

We reveal that age-dependent social contact structure may
play an important role in (super)spreading EBOV in the local
community. Specifically, our results identify age groups that have
higher instantaneous transmissibility and show that cases in the

more infectious age groups tend to be superspreaders when com-
bined with a relatively long infectious duration. One plausible
explanation, from the social perspective, may be that the young
and old are much more likely to have (and infect) lots of visi-
tors, compared to other age groups; a parallel corollary is that
the young and old might be more likely to have others car-
ing for them. Also, our results highlight systematic differences
between community-based cases and cases notified in clinical
care systems, with terminal community-based cases progressing
significantly more rapidly. Our results stress the importance
of characterizing superspreading of EBOV, enhance current
understandings of its spatiotemporal dynamics, and highlight the
potential importance of targeted control measures−for example,
during the 2014–2015 EBOV epidemic, millions of dollars were
spent implementing message strategies about Ebola prevention
and control across entire countries; our results suggest that mes-
sage strategies targeting individuals with higher risk may be use-
ful to prevent superspreading events and the persistence of the
outbreak.

There are limitations of our results. First of all, although
community-based surveillance data complement formal surveil-
lance by detecting cases that did not interface with clinical care,
they contain only partial information about the epidemic, with
hospitalized cases omitted. Also, it is possible that, by underre-
porting some community cases who generated subsequent cases,
certain reported cases may be falsely attributed as sources of
infection for those subsequent cases, overestimating the degree
of superspreading. Accordingly, our sensitivity analysis evalu-
ated the impact of these sources of underreporting, showing that
our estimated degree of superspreading may in fact be conser-
vative and represents a lower bound−superspreading in EBOV
may be even more prominent in reality (Fig. 5). It is also worth
noting that, by considering only safe burials, which tend to be
less transmissible (relative to those did not receive safe buri-
als) among deaths (14), our estimate of superspreading may
have been conservative. Conversely, because it was reported that
individuals who eventually died might have a higher intrinsic
transmissibility (24), our analysis might bias toward high trans-
mitters by only using death data. Our methodology represents a
transmission network-based approach that focused on construct-
ing transmission trees among cases (25–28). Although such an
approach captures contacts that caused infections, it does not
account for “unsuccessful” contacts that correspond to escaped
infections. Future theoretical work will need to include such con-
tacts. Nevertheless, because unsuccessful contacts are not parts
of the transmission chain, ignoring them has limited effect on
the transmission tree or on many overall topological charac-
teristics (e.g., average number of offspring of an infected case)
(25, 28, 29). Finally, although our analysis reveals the importance
of age as demographic determinants of superspreading, future
work in linking them with virological factors (e.g., age-specific
viral loads) may shed further light (16).

Materials and Methods
Spatiotemporal Transmission Model. We developed a continuous-time spa-
tiotemporal transmission model that allowed us to sample the trans-
mission tree among cases, integrating observed spatial and temporal
individual data. This approach allowed us to infer explicitly the mean
offspring distribution of each case. Specifically, the total probability of
individual j becoming infected during time period [t, t + dt] was given by

r(j, t, dt) =

α+
∑

i∈ξI (t)

βi × K(dij ; η)

 dt + o(dt), [1]

where ξI(t) is the set of all infectious individuals at time t, α is the back-
ground rate of infection, and βi is the age-specific instantaneous infection
hazard of a case in ξI(t). We allowed five-level βi according to the age—
that is, we had βi = βa for age between [0, 15], βb for age between [15, 30],
βc for age between [30, 45], βd for age between [45, 60], and βe for age
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>60. K(dij ; η), also known as a dispersal kernel, characterized the depen-
dence of the infectious challenge from infectious i to j as a function of
distance dij between them. Here, we have K(dij ; η) = exp(−ηdij). After the
infection, it was assumed that individual j would go through an incuba-
tion period (i.e., time from infection to symptoms onset) and an infectious
period (i.e., time from onset to death). The incubation period was assumed
to follow a gamma distribution Γ(a, b) distribution (where a and b are mean
and SD, respectively), and the infectious period followed an exponential
distribution with mean c. We assumed the infectiousness started from the
symptoms onset time. It was noted that unknown contacts corresponding to
escaped infections were not taken into account in our framework, resulting
in a likelihood function that accounted for only successful infectious con-
tacts (SI Text)−that is, our approach essentially represented a transmission
network-based inference, where the focus was to construct the transmission
tree among infected individuals (25–28).

Data Augmentation and Model Fit and Validation. We estimated θ (i.e., the
parameter vector) in the Bayesian framework by sampling it from the pos-
terior distribution P(θ|x), where x is the observed data. Denoting the likeli-
hood by L(θ; x), the posterior distribution of θ is P(θ|x) ∝ L(θ; x)π(θ), where
π(θ) is prior distribution for θ. Weak uniform priors for parameters in θ were
used (Table S4). Markov chain Monte Carlo (MCMC) techniques (30) were
used to obtain the posterior distribution. The unobserved infection times
and transmission network were imputed in the MCMC. Sampled transmis-
sion networks were recorded and used to infer the offspring distribution
of each case. Details of the likelihood function and the MCMC algorithm
are given in SI Text. Model fit was assessed by comparing the observed

data with those simulated from the estimated model, suggesting a good
fit (Fig. S4). Furthermore, for validating the implementation of our infer-
ence procedures, we generated multiple sets of pseudodata from the modal
process and demonstrated that we could successfully reestimate the model
parameters (Fig. S5).

Testing Underreporting. We divided the observational period into many
3-d-wide intervals. Within each time interval, we had the total number of
unreported cases n′

t = nt/(1−r)−nt , where nt and r were the observed cases
in the interval and the assumed underreporting rate, respectively. Burial
times and symptoms-onset time of these unreported cases were drawn from
the empirical distribution of the observed cases. Finally, these n′

t cases were
distributed spatially by using the empirical distribution of (normalized) pop-
ulation densities across the study area. We also tested an underreporting
rate that decreases with time (Fig. S1). For the scenario that considers unre-
ported hospitalized cases, we drew the time from symptoms onset to hos-
pitalization from the truncated above (at 7 d) empirical infectious period
distribution of observed cases, effectively resulting in a shorter infectious
period for unreported cases. These artificially generated data were com-
bined with the observed data and fitted with our model.
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SI Text
Likelihood Function. Let E =(E1,E2, . . . ,En) be the vector of
the exposure/infection times of the n =200 cases, I =(I1, I2, . . . ,
In) the times of becoming infectious, and R=(R1,R2, . . . ,Rn)
the death times. The epidemic was observed up to time tmax .
The incubation period was assumed to be a two-parameter
density function fu(·; a, b) characterized by parameters a and
b; similarly, for the infectious period (i.e., time from start of
infectiousness to death), with density function fw(·; c). Finally,
let ψj be the source of infection of case j and ψ be the
collection set for n cases. The likelihood of the parame-
ter vector θ=(α, βψj , η, a, b, c) given complete data can be
expressed as

L(θ;E , I ,R,ψ) =
∏
j

P(j , ψj )×Q(Ej )

×
∏
j

fu(Ij − Ej ; a, b)×
∏
j

fw (Rj − Ij ; c),

[S1]

where

P(j , ψj ) =

{
α, if j is an index case,
βψjK (dψj j ; η), if j infected by a caseψj ,

[S2]

is the (unnormalized) probability of case j to be an index case of
infected by case ψj , respectively, and

Q(Ej ) = exp

− ∫ Ej

0

{α+
∑

i∈ξI (t)

βiK (dij ; η)}dt

, [S3]

Fig. S1. Effect of time-varying underreporting on estimates of transmission dynamics. (A) Estimates of k. Bars represent the 95% C.I., and dots represent
the median values. (B) Estimates of R0. (C) Estimates of most probable distance of transmission. (D) Estimates of median transmission distance. Dotted
lines represent the corresponding estimates using our data. The underreporting rate is assumed to decrease with a step size 10%, from 90 to 10%, in the
course of the epidemic: The study period is divided into nine equal intervals, and each interval takes an underreporting rate that is 10% lower than the
previous one.

is the probability of case j to have not been infected up to time
Ej , where ξI (t) is the set of all infectious individuals at time t .

MCMC Algorithm. Parameters in θ were updated sequentially with
a standard random-walk Metropolis–Hastings (M-H) algorithm
(30, 31). For example, a new parameter value α′ was proposed
from a normal distribution centered on the current value of α,
that is,

α′ = α+N (0, ρ2) [S4]

where ρ controls the step size of the random-walk. Elements in
infection times vector E were also treated as unobserved model
parameters and were imputed in the same manner (30). Approx-
imately 10% of the cases had invalid records of symptom onset
time; hence, corresponding elements in I were also imputed sim-
ilarly. We used (weak) uniform priors with upper bounds for all
model parameters, and the maximum of the incubation period
was assumed to be 21 d (32). Details of the priors and obtained
posteriors are shown in Table S4.

Denote ωψ as the set of eligible candidates for a new source
of infection ψ′

j for j (i.e., ωψ contains a set of cases whose are
infectious at Ej ). We propose a new infecting source i ∈ ωψ to
be ψ′

j with probability

pij ∝ βK (dij ; η). [S5]

Note that the background infection can be accommodated by
adding a permanent infectious source presenting an additional
challenge of strength α to individual j . A newly proposed source
is accepted or rejected depending on the M-H acceptance prob-
ability (29).
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Fig. S2. Testing the assumption of an isotropic spatial dispersal. (A) The distribution of mean offsprings under different scenarios. (B) The distribution of
R0 under different scenarios. (C) The distribution of transmission distance under different scenarios. Here we considered three scenarios. In scenario 1 (base
scenario), we assumed an isotropic dispersal and did not take into account the potential effect of population density. We considered in scenarios 2 and 3 that
the dispersal kernel value was “moderated” by the relative population density of the 100 m×100 m grid that a case resides in. Scenarios 2 and 3 differ in how
the population density was normalized (to between [0, 1]) to obtain the discounting factor: In scenario 2, we normalized according to log(1 + population
density), and in scenario 3, we normalized according to the absolute scale of population density.
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Fig. S3. Population density and spatial distribution of the cases in the study area. Other than the smaller clusters near the center of the study area, most
cases were found in more populated regions. It was noted that the raw grid resolution is 100 m × 100 m (which is too fine to display), and here it is binned
into 30 × 30 grids for better visualization. Lat, latitude; Lon, longitude.

Lau et al. www.pnas.org/cgi/content/short/1614595114 3 of 6

http://www.pnas.org/cgi/content/short/1614595114


Fig. S4. Assessing the model fit. We used the estimated model to simulate (500 times) forward the transmission path and timings of events (i.e., infection
time, onset time, and death time). (A) Comparison of the observed weekly temporal distribution of the cases with that summarized from the simulated data.
Gray area represents the 95% C.I., and the black dots and line are the observed data, with 5 of 500 random realizations (colored lines) of the simulated
epidemics imposed. We compared the temporal autocorrelations (at lag = 1 and lag = 2) of the observed and simulated epidemics. We also compared the
peak height, the growth rate before peak, and decay rate after peak between the observed and simulated (the growth and decay rates correspond to the
slopes of best-fitted linear lines to the observed or simulated data). Dotted lines represent the values of the summary statistics corresponding to the observed
data. (B) Comparison of the observed spatial autocorrelation and the simulated. Here we used two common measures, Moran’s I and Geary’s C indices (33,
34), which range from −1 to 1 (a value close 1 indicates strong clustering and close to −1 indicates strong dispersion). Dotted lines represent the values of
the summary statistics corresponding to the observed data.
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Fig. S5. Checking of the implementation of the inference procedures. We simulated 10 independent pseudodata from the model, with the model parameter
values close to the posterior means obtained from fitting with the real dataset. The model is then fitted to each of the simulated datasets, and the resultant
posterior distributions of the model parameters are shown. The true values of the model parameters are indicated by the red lines.
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Table S1. Testing alternative parameterizations of the incuba-
tion period

Generation Dispersion
Parameterization time, d R0 parameter, k

Gamma (baseline) 10.9 2.39 0.37
Lognormal 10.9 2.46 0.35
Exponential 9.7 2.20 0.45

The mean of generation time, R0, and the dispersion parameter k that
quantifies superspreading are shown.

Table S2. Testing alternative parameterizations of the infec-
tious period

Generation Dispersion
Parameterization time, d R0 parameter, k

Exponential (baseline) 10.9 2.39 0.37
Weibull 10.3 2.39 0.40
Gamma 10.43 2.40 0.38

The mean of generation time, R0, and the dispersion parameter k that
quantifies superspreading are shown.

Table S3. Testing alternative uninformative priors

Generation Dispersion
Priors time, d R0 parameter, k

U(0, 100) (baseline) 10.9 2.39 0.37
Exp(rate = 0.0001) 10.8 2.39 0.36

The mean of generation time, R0, and the dispersion parameter k that
quantifies superspreading are shown.

Table S4. Prior and posterior distributions of model parameters

Parameter Median [95% C.I.] Prior

βa, infectivity of first age group 0.76 [0.42, 1.39] U(0,100)
βb, infectivity of second age group 0.07 [0.002, 0.36] U(0,100)
βc, infectivity of third age group 0.4 [0.1, 0.66] U(0,100)
βd , infectivity of fourth age group 0.79 [0.27, 1.25] U(0,100)
βe, infectivity of fifth age group 0.56 [0.23, 0.92] U(0,100)
η, spatial kernel parameter 0.42 [0.06, 0.87] U(0,100)
α (10−4), background hazard 4.6 [0.21, 12] U(0,100)
a, mean of the incubation period 6.87 [5.34, 8.50] U(0,100)
b, SD of the incubation period 4.02 [2.44, 5.44] U(0,100)
c, mean (and SD) of the infectious period 3.96 [3.41, 4.60] U(0,100)
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