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Abstract  
 
The relative fitness of drug resistant versus susceptible bacteria in an environment dictates resistance 
prevalence. Estimates for the relative fitness of resistant Mycobacterium tuberculosis (Mtb) strains are 
highly heterogeneous, many are derived from in-vitro experiments and few studies have estimated 
relative fitness in the field. Measuring fitness in the field allows us to determine how the environment 
(including factors such as host genetics, TB treatment regimen etc.) influences the ability for bacteria 
to survive, be transmitted and cause secondary cases of disease.  

We designed a household structured, stochastic mathematical model to estimate the fitness 
costs associated with multi-drug resistance (MDR) carriage in Mtb strains in Lima, Peru over a 3-year 
period. By fitting the model to data from a large prospective cohort study of TB disease in household 
contacts we estimated the fitness, relative to susceptible strains with a fitness of 1, of MDR-Mtb strains 
to be 0.33 (95% credible interval: 0.17-0.54) or 0.39 (0.26-0.58), if only transmission or progression to 
disease, respectively, was affected by MDR. The relative fitness of MDR-Mtb increased to 0.57 (0.43-
0.73) when the fitness cost was modelled to influence both transmission and progression to disease 
equally.  

We found the average relative fitness of MDR-Mtb circulating within households in Lima, Peru 
between 2010-2013 to be significantly lower than susceptible-Mtb circulating at the same time and 
location. If these fitness levels do not change, then existing TB control programmes are likely to keep 
MDR-TB prevalence at the current levels in Lima, Peru.  
 
 
 
Significance Statement 
The relative fitness of drug resistant strains is a key determinant of resistance prevalence. We used a 
new quantitative framework to directly estimate the average relative fitness cost of multi-drug resistant 
(MDR-) Mycobacterium tuberculosis (Mtb) strains from a household study in Lima, Peru. This showed 
that the relative fitness of MDR-Mtb was substantially lower than that of drug-susceptible Mtb strains 
circulating at the same time and location, suggesting that with current control methods MDR-TB 
diseases levels may be held stable in Lima, Peru.  
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Introduction 
 
Mycobacterium tuberculosis (Mtb) is a highly prevalent bacterium, thought to infect just under a quarter 
of the world’s population (1). Treatment of tuberculosis (TB) disease is not simple and drug-susceptible 
tuberculosis (DS-TB) requires a multiple drug regimen taken for at least 6 months (2). Multidrug-
resistant tuberculosis (MDR-TB) treatment regimens are significantly longer, cause serious side effects 
and are very expensive (3). Whilst currently 5% of all TB cases globally are estimated to be MDR-TB 
(2), predicting the future burden of DS- and MDR-TB is essential for TB control programmes.  

One key parameter that determines the future prevalence of drug resistant TB is the relative 
fitness of drug resistant Mtb strains as compared to drug susceptible Mtb strains (4-7). Fitness is a 
complex, environment-dependent trait that can be defined as the ability of a pathogen to survive, 
reproduce, be transmitted and cause secondary cases of disease. These abilities are affected by multiple 
environmental factors such as a host’s genetics, the current TB treatment regimen and other risk factors 
for transmission, which are all time-varying. The importance of this parameter has been highlighted by 
several mathematical models which show how even small changes in its value can predict widely 
varying future levels of MDR-TB burden (4-6, 8, 9). Thus, gaining environment dependent, accurate 
estimates of fitness is of critical importance.  

Within Mtb, it has been shown that the appearance of drug resistance mutations affects fitness 
(10-12). These previous studies have shown that resistant Mtb is, usually, less fit than susceptible Mtb 
under a range of fitness definitions: either by demonstrating a lower growth rate in vitro (e.g. (13)), less 
progression to disease after inoculation in guinea pigs (e.g.  (14)) or a lower chance of causing 
secondary cases of disease (e.g. (12, 15)). The latter definition is important for epidemiological 
predictions of burden, whilst the first provides the potential underlying biological cause. The 
epidemiological fitness of a Mtb strain can be split into an ability to (1) cause secondary infections 
(transmission) and (2) cause subsequent active disease (progression). For example, resistant Mtb may 
be transmitted equally as well, but subsequent disease rates in those infected may be lower or less 
severe. For Mtb this split is especially pertinent due to the importance of the latent, non-infectious, stage 
of disease.  

Also highly important for Mtb is the spatial location of transmission (16). Few studies have 
considered the critical influence of household structure on transmission of Mtb. To our knowledge, no 
studies have considered the spread of drug-resistant tuberculosis in the context of a household-
structured stochastic mathematical model.  

The difference in definitions of fitness and corresponding experimental data makes translation 
from data analysis to predictive mathematical modelling difficult. Here, we tackle this problem by 
fitting a mathematical model to a detailed data set on the transmission of Mtb strains collected in a large 
cohort study of households undertaken in Lima, Peru between 2010 and 2013 (17). We derive estimates 
of fitness in this specific setting with different fitness definitions (either effects on transmission and/or 
progression to disease) and test the robustness of these estimates under a range of assumptions. These 
parameters will allow for better predictions of future MDR-TB levels and an improved understanding 
of MDR-TB spread.   
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Results 
 
Fit to the data 
Model structures 1-3 could all replicate the data from the household study (Figure 2). The MCMC trace 
and density plots of the posterior distributions are shown in SI Text.  
 
Parameter estimates 
The estimates of the external force of infection for DS- and MDR-TB were similar across the three 
models (Table 3, Figure 3). The per capita transmission rate of DS-TB within households was also 
similar across the three models. The relative fitness of MDR-Mtb was similar for Model 1 and 2, but 
increased in Model 3, as might be expected as in this third model the reduction in fitness is applied to 
two rates. For Model 1, that is assuming a resistance phenotype affects transmission, the relative fitness 
of MDR-Mtb was estimated to be 0.33 (95% CI: 0.17-0.54) vs. DS-Mtb with a fitness of 1. In Model 2, 
where a resistance phenotype affected disease progression, a similar relative fitness was estimated: 0.39 
(0.26-0.58). If both rates were affected, then the relative fitness of MDR-Mtb was estimated to be 0.57 
(0.43-0.73) (Table 3, Figure 3).  

Comparing the external force of infection for DS- vs. MDR-TB we found that the ratio of the 
two was around 0.5 (median estimate 0.42 / 0.54 / 0.55 from the three models). This single value for 
the external force of infection (foi) represents a complex set of processes (contact patterns, length of 
infectiousness etc.) and so cannot be used to determine relative fitness. However, the ratio is in the 
range that supports our estimates of the relative fitness from the internal household model.  
 
Probability of remaining free from tuberculosis 
We explored the probability of remaining free from tuberculosis as was presented from the original 
study (Figure 2 in (17)). By comparison we had highly similar dynamics to the study (SI text Figure 
S5) 
 
Scenario analysis 
Our five scenarios gave very similar estimates for the relative fitness of MDR-Mtb (a range of medians 
from 0.22 – 0.41, SI text). This suggests that the estimates of relative fitness are robust to: increasing 
the initial proportion of households that were initially infected with latent MDR-Mtb from 2% to 10% 
(in the pre-study), setting TB incidence to high or low levels (see SI text for parameter details), 
extending the initial run-in period from 10 to 30 years or removing the saturation of transmission within 
households.  
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Discussion 
 
Our results suggest that the average relative fitness of MDR-Mtb strains in circulating in households in 
Lima, Peru in 2010-2013 was substantially lower than that of drug susceptible strains (~40-70% 
reduction). When the effect of resistance was measured as an effect on transmission only, then the 
relative fitness of MDR-Mtb strains was lower than if the effect of resistance lowered only the 
progression rate to disease. When a resistance phenotype was assumed to affect both transmission and 
progression to disease rates, then the relative fitness of MDR-TB strains was higher at ~60%. These 
costs to resistance carriage were observed despite the longer infectious period of drug-resistant TB 
arising from delayed diagnosis and treatment. 

The strengths of this study are that we were able to fit a stochastic household-level model to 
detailed location-specific data, accounting for accurate distributions of both household size and study 
follow-up time. We were also able to differentiate between internal and external transmission, matching 
the resistance typing data from the household study (17). This model and its MCMC fitting algorithm 
can be applied to other settings and then used as the basis for predictions of future levels of DS- and 
MDR-TB. In particular, this novel way of estimating fitness costs, by fitting dynamic transmission 
models to resistance-specific incidence data could be used for other TB prevalent settings or for other 
bacteria. Furthermore, the estimates given can be directly translated into dynamic transmission models 
for prediction whilst previous estimates, for example of differences in growth rates have less clear 
epidemiological translations.  

Our modelling analysis is limited by homogeneity - of both hosts and strains. The 
characteristics of the DS- and MDR-TB contacts under consideration in the underlying household study 
were highly similar (17). Thus, as our estimate is of a relative fitness we believe that including host 
differences in our model may have had little effect on our relative results. Strain heterogeneities 
however, mean that our result is (potentially) an average across many different drug resistant strains. It 
is known that differences in resistance and compensatory mutation combinations result in a diversity in 
fitness across strains (13). This diversity is highly important for predictions of MDR-TB levels in the 
future (18). Our estimate must therefore be taken as a population average in Lima, at a certain time and 
indicative of the mean fitness rather than an indicator of the range of potential fitness in the population. 
If one highly fit MDR-TB strain were to emerge (or were already present), then future prevalence 
predictions based on our (mean) estimate could be an underestimate. We also assumed that transmission 
of the strains was internal if the resistant phenotype was the same as the index, but external if different. 
We made this same assumption for both susceptible and resistant strains. Hence, our estimates would 
only be affected if we thought that a different percentage of infection for susceptible strains was 
occurring outside the household than for resistant strains and at the moment we cannot determine this.  

Our Model 1, where a transmission effect is assumed, is the most similar to previous models of 
MDR-TB transmission (6, 9, 19). However, our MDR-TB fitness predictions are at the lower end of the 
range seen previously (10). This may reflect the situation in Peru where there is a strong tuberculosis 
control infrastructure with a well-developed MDR-TB treatment program and a growing economy. 
These two factors may have combined to limit the spread of MDR-TB and hence prevent the adaptation 
of MDR-TB to a higher fitness. At the bacterial level, compensatory fitness mutations that could 
influence the ability of drug resistant Mtb strains to spread may not have emerged or not been allowed 
to spread. Calibrating the model to other settings would help clarify this issue. Alternatively, it may be 
that our estimates are providing, for the first time, a better direct translation of fitness from 
epidemiological data to a transmission model parameterisation.  

There is a paucity of evidence for whether differences in TB disease prevalence in general are 
due to infection or progression to disease (20). In particular, for resistant strains it is unclear where the 
effect of becoming resistant should be applied in the natural history of tuberculosis infection. Both 
Snider and Teixeira (21, 22) demonstrated similar levels of tuberculin skin test (TST) conversion among 
MDR- and DS-TB household contacts but lower levels of disease in contacts of those with MDR-TB. 
This was also seen in a recent study in children (23), whilst a higher prevalence of TST positivity was 
found in household contacts of MDR-TB patients than contacts of newly diagnosed TB patients in Viet 
Nam (24). This evidence combines to suggest that the fitness cost to resistance, if any, was to be 
observed on the progression to disease. We make this assumption in our Model 2, where the hypothesis 
is that those with active TB disease, whether due to resistant or susceptible bacteria, have a similar 
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bacterial load and hence ability to transmit successfully. However, once successfully established in a 
new host, resistant bacteria may be less able to combat the immune system and establish a disease state. 
This has been assumed in a previous model of HIV and MDR-TB interaction (25). 

The relative fitness estimates from Model 1 and 2 are similar, whilst the relative fitness 
estimates from Model 3 are higher, potentially due to the effect being on two processes and hence 
multiplicative. To determine which model structure is more appropriate, data on infection as well as 
disease status in contacts of index cases would be required. As mentioned above, TST surveys have 
found similar rates of infection in contacts of DS-TB and MDR-TB cases (21, 23) but lower rates of 
disease in contacts of MDR-TB cases, suggesting that Model 2 may be the most biologically appropriate 
choice (where progression to disease but not transmission rates are affected by becoming resistant).  

Previous models have assumed that resistant strains could become more fit (i.e. have a relative 
fitness greater than 1), whilst we capped the relative fitness of the resistant strains at 1, due to the data 
from the household cohort (17). Our posterior parameter distributions for the estimated relative fitness 
parameter (reflected in the 95% CI for f, see SI text) suggest that this is a valid assumption for the 
resistant strains circulating at this time in Lima. Importantly, all our estimates are of “relative” fitness, 
and therefore should be robust to changes in natural history assumptions as these would affect both drug 
susceptible and resistant strain transmission. 

Future work will include adding in detail on host and strain heterogeneity to the model. 
However, as described above the former characteristics distribution was similar across DS- and MDR-
TB households whilst the latter requires data that is currently unavailable. Data collection of strain 
heterogeneity along with active contact tracing and an understanding of where and from whom 
transmission occurs would drastically improve our understanding of fitness and hence improve 
estimates of future MDR-TB levels. As we were fitting to a specific household-based study we modelled 
the community effect on transmission as external force of infection rather than explicitly including a 
community compartment as has been done for previous models of TB spread (26). Exploring the 
external infection methods and potential changes in this force of infection over time (i.e. making it 
dynamic) would allow for models that can predict levels of MDR-TB in Lima. Importantly, this model 
provides a key estimate of a parameter that is needed for many existing mathematical model structures, 
where only a single “resistant” strain is included. Future predictive transmission modelling using our 
relative fitness estimates are likely to suggest that if treatment objectives are maintained and this fitness 
measure remains constant, that MDR-TB prevalence will remain under control in Lima in the short 
term.  

In conclusion, if the fitness cost of drug resistance in Mtb is exerted on the rate of progression 
to active disease rather than transmission, we estimate that the relative fitness is between 30-40% 
relative to drug susceptible strains (at 100%). Importantly this paper provides direct transmission model 
estimates, using a novel method, of the relative fitness levels of drug resistant Mtb strains. If these 
fitness levels do not change, then the existing TB control programmes are likely to keep MDR-TB 
prevalence at their current levels in Lima, Peru. These estimates now need to be gained for Mtb in other 
settings and the values used in models to explore future global burden. 
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Materials and Methods 
 
Data 
The details of the study and participants can be found in (17). Briefly, 213 and 487 households were 
recruited with an index case of diagnosed MDR- or DS-TB respectively during 2010 to 2013. 
Households were followed up for variable periods of time up to a maximum of 3 years (SI text Figure 
S1). During the study households were visited every 6 months, and household contacts were monitored 
for TB disease. It was found that 35/1055 (3.32%, 95% CI [2.32, .4.58]), of the MDR-TB contacts, and 
114/2356 (4.84%, 95% CI [4.01, 5.78]), of the DS-TB contacts developed TB disease, suggesting that 
DS-TB has higher fitness. There were no significant differences between cohorts by HIV status, age, 
gender or household size (17).  

The specific data used to calibrate the model was 1) the incidence of MDR-TB and 2) DS-TB 
in households with an index DS-TB case and 3) the incidence of MDR-TB and 4) DS-TB in households 
with an index MDR-TB case (Table 1). We assumed that transmission of the strains was internal if the 
resistant phenotype was the same as the index, but external if different. The percentages of incident 
cases with resistance profiles matching the index was used to multiply the incidence levels accordingly.  
  
Model structure 
The mathematical model was a standard two-strain dynamic TB model (Figure 1), with transmission 
modelled at the level of the household. A Gillespie stochastic simulation algorithm in R (27) was 
developed using the R package “GillespieSSA” (28). Using a stochastic transmission model was 
important as the model was implemented independently in households where the small populations 
mean stochastic effects are highly important. We assumed that saturation of transmission could occur 
and hence scaled our transmission rate by the size of the household (number of people), assuming 
households have the same ventilation level (or at least that this did not vary by index case Mtb resistance 
status) and within-household homogeneous mixing (29). This assumption means that in households 
with more people, household members are assumed to have lower individual chance of infection from 
an active disease case than in smaller households, due to decreased exposure. This has been observed 
for another airborne pathogen, influenza (30) and was explored in sensitivity analysis. All natural 
history parameters were taken from the literature, are listed in Table 2 and the dynamics explained in 
the legend to Figure 1.  

Four parameters were estimated from the data (Table 1): (1) the per capita transmission rate of 
DS-TB within households (βS), (2) the relative fitness of MDR-Mtb strains vs. DS-Mtb strains (f) 
expressed as an effect on transmission or progression or both, and the external (to households) force of 
infection (foi) of (3) DS-TB fois and (4) MDR-TB foir.   
 
Three model formulations 
Resistant strains were allowed to have an equal or lower fitness relative to susceptible strains. The 
mechanisms behind this reduction were estimated to affect two different rates: the transmission rate, 
the rate of progression to disease, or both (Figure 1). We assumed that the fitness of the resistant strains 
could not rise above that of susceptible strains due to the data from the household cohort (17). Model 1 
(transmission fitness cost model) assumed that fitness costs directly affected the number of secondary 
infections by reducing the transmission parameter for MDR-Mtb (0 < f1 < 1, f2 = 1, Figure 1). This is 
the standard assumption for the effect of resistance on fitness for transmission dynamic models of Mtb 
(6, 9, 19) and other pathogens (31). Model 2 (progression fitness cost model) assumed that although 
MDR-TB transmission occurred at the same rate as DS-TB, there is a fitness cost to progression to 
disease (f1 =1, 0 < f2 < 1, Figure 1). Model 3 assumed that there was a fitness cost to both transmission 
and progression, and that the cost was the same for both processes (0 < f1 = f2 < 1, Figure 1). We could 
not explore a Model with fitness affecting both processes at differing levels as we did not have data on 
levels of infection. Without this data, a model with high transmission fitness cost but low progression 
cost would be equally as likely as a model with a low transmission fitness cost but a high progression 
cost and hence would be uninformative. Note that fixing either f1 or f2 equal to one is the same as 
ignoring this parameter altogether and leaving the multiplied rate at its background level as they are 
both scalar constant parameters with no units. 
 

.CC-BY 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/195313doi: bioRxiv preprint first posted online Oct. 11, 2017; 

http://dx.doi.org/10.1101/195313
http://creativecommons.org/licenses/by/4.0/


 

8 

Model simulation 
The model initially sampled 700 household sizes from the distribution of household sizes in the trial 
(32), and initial conditions of latent infection taken from data (2, 33) (SI text). The model was then 
simulated for 10 years with a sampled set of the four unknown parameters (pre-study period). A random 
time point from over this 10-year period in which there was at least one active case with the same 
sensitivity as the initial case in the household (i.e. DS-TB or MDR-TB) was taken to be the time the 
household entered the study and the active index case was detected. This allows for simulation of 
changes in latency in the household and provides initial conditions dependent upon each parameter 
sample. 

The above randomly sampled time point of entry to the study was taken to be the initial 
conditions for the simulation of the model that was fitted to the household study (17) (study period). 
The same values of the four unknown parameters was used as in the pre-study period and the simulation 
time for each household was randomly sampled from the distribution of follow-up times in the study 
(SI text Figure S1). The only parameter that changed, to match the altered patient care in the study, was 
the case detection rate which increased for the study period from the WHO estimates to a screen 
occurring every 6 months (Table 2).  

The TB incidence from the model was calculated by determining the total number of new cases 
of active TB in all 700 households over the follow-up time, and dividing this by the total number of 
follow-up years in these households. The total number of follow-up years was a product of the number 
of household members and the follow-up time for the household taking into account any deaths over 
this time. We assumed that no-one left the households other than by death (natural or due to TB). For a 
detailed overview of the process see SI text Figure S2. 
 
Model fitting 
Approximate Bayesian Computation (ABC) was paired with Markov chain Monte Carlo (MCMC) 
methods to estimate the four unknown parameters (34). All other parameters were kept fixed at their 
baseline value (Table 2). The summary statistic used was the TB incidence from the model falling 
within the 95% CI for all four TB incidence measures from the data. Uniform priors were assumed for 
all four parameters (Table 1).   

To estimate the standard deviation required for the MCMC for the four unknown parameters, 
Latin Hypercube Sampling (LHS) from the prior ranges was initially used (Stage A). The empirical 
standard deviation from the accepted fits was then used as proposal distribution of a Metropolis-
Hastings MCMC sampler (Stage B), used to estimate posterior probabilities of the parameters.  

We used the sampled trajectories to consider the probability of remaining free of tuberculosis 
from the model output and compare the general trends to the data (Figure 2 from (17)).  
 
Scenario analysis 
A scenario analysis was used to explore the sensitivity of Model 1 results to key natural history 
parameters. Firstly, we changed the initial proportion of the population latently infected with MDR-
Mtb from 2% to 10%.  

A full sensitivity analysis of the parameters kept fixed in the model fits was not possible due to 
limitations imposed by computation time. Instead, to determine which further scenarios to explore, we 
determined the parameters most correlated with TB incidence in our model, and hence likely to have 
the biggest impact on our model fit and parameter estimates. To determine these parameters, we used 
LHS to choose 10,000 parameter sets from (uniform) prior distributions for all parameters (Table 2). 
We then ran Model 1 with these 10,000 parameter sets and determined the parameters that were 
statistically significantly correlated with any of the four TB incidence outputs (Kendall correlation, p < 
0.01). These parameters were then used to design two scenarios - one with a combination of these 
parameters at their prior values which gave highest TB incidence and the combination which gave the 
lowest TB incidence.  

We also increased our 10-year initial run-in period for the population to 30 years and explore 
the impact on the estimates. Furthermore, we explored removing the assumption of saturating household 
transmission (per capita transmission rate was then not dependent on household size).  
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Figure Legends 
 
Figure 1: A standard natural history, transmission model for two strains (susceptible and resistant) of 
Mtb was used. Uninfected people become infected at a rate dependent on the number of active cases 
(dynamic transmission). Once infected, the majority of people (85%) are assumed to enter a Latent slow 
(LS / LR) state. The remainder enter a rapid progression (Latent fast, LFS / LFR ) state which has a 
higher rate of progression to active disease (AS / AR). Resistance mutations are acquired during active 
disease. Those with active disease recover to the Latent slow state via treatment or natural cure. The 
fitness cost to resistance is assumed to affect the rate of transmission (f1) or the rate at which those 
latently infected with MDR-TB progress to active disease (f2). Only the effect on primary transmission 
of f1 is highlighted here, but reinfection is also decreased. f1 and f2 are set at 1 or allowed to vary between 
0 and 1 in the three separate models: f1 in Model 1, f2 in Model 2 and both f1 and f2 in Model 3. 
 
Figure 2: Model fits. Black dots represent Model 1 output that matches to data shown in coloured ranges 
for each type of household (HH). See SI text Figures S3&S4 for equivalent plots for Model 2&3. 
 
Figure 3: Fitted parameters from each Model. The units for the y-axis of the corresponding plots are: 
for the external forces of infection (‘fois’ and ‘foir’) proportion infected per year, for the relative fitness 
(f) there are no units and for the per capita transmission rate (‘beta’) the units are effective contact rate 
per year. Model 1 assumes a transmission cost to resistance, Model 2 a disease progression cost and 
Model 3 assumes an effect on both. 
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Table 1: Fitted parameters with description, data used for fitting, prior distributions and any differences by model structure. All parameters are fitted to the 
TB incidence date from the household (HH) study (17). The three models have different assumptions around the effect of decreased fitness, with f varying to 
be f1 (affects transmission rate) or f2 (affects progression to disease rate) (see Figure 1). 
 

Symbol Parameter description Data Prior Distribution Model 1 Model 2 Model 3 
fois External force of infection of DS-TB DS-TB incidence in 

MDR-TB index HH: 
4264 [3916, 4338] 

Uniform 
[0; 0:5] 
 

/ 

foir External force of infection of MDR-TB MDR-TB incidence in 
DS-TB index HH: 
87 [13, 435] 

Uniform 
[0, 0:3] 

/ 

f 
(f1, f2) 

Relative fitness of MDR-TB strains compared to 
DS-TB strains which have a fitness of 1 

MDR-TB incidence in 
MDR-TB index HH: 
2112 [1646, 2358] 

Uniform 
[0, 1] 
 

0 < f1 < 1 
f2 = 1 

f1 = 1 
0 < f2 < 1 

f1 = f2 
0 < f1 < 1 

bs Per capita transmission rate of DS-TB within 
households 

DS-TB incidence in 
DS-TB index HH: 
4264 [3916, 4338] 

Uniform 
[90, 140] 
 

/ 

br Per capita transmission rate of MDR-TB within 
households 

Calculated from other fitted parameters: br = f1bs 
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Table 2: Parameter values with description and baseline values. All prior distributions were uniform. 
 

 
 

Symbol  Parameter description Baseline 
value 

Prior 
distribution 

Notes and references 

Nr Number of households with 
MDR-TB index case 

213 / (32) 

Ns Number of households with DS-
TB index case 

487 / (32) 

h Household size 2 - 15 / (17) 

p Proportion of (re-)infected 
individuals which progress to 
the “latent fast” state 

0.15 0.08-0.25 (35-37) 

c Protection from developing 
active TB upon re-infection 

0.35  0.25-0.45  (35, 38-41) 

f Risk of reactivation among 
those latently infected per year 

1.13 x 10-4 1 - 3 x 10-4 (35, 38, 39, 41-43) 

e Probability of acquiring new 
drug resistance during treatment 

0:008  0.005-0.01 (44) 

d Proportion of new active cases 
which directly become 
infectious 

0.5 0.25-0.75 (35, 41, 45, 46) 

µ Background death rate  1/77 = 
0.013  

0.012-0.014 Inverse of average life 
expectancy in Peru (47) 

µA Additional death rate of those 
actively infected and infectious 
per year 

0.26 0.2-0.4 (35) 

n Annual risk of natural cure for 
TB cases (returns to latent state) 

0.2  
 

0.15-0.25 (35) 

ws Proportion of DS-TB active 
cases detected and treated per 
year 

0.8; 2 0.5-0.95 For 2012 (2) for 
prestudy; In study: 
screen every 6 months 

wr Proportion of MDR-TB active 
cases detected and treated per 
year 

0.64; 2 0.2-0.9 79% of the above 80% 
(ws) found that received 
DST in 2012 (48); In 
study: screen every 6 
months 

(1 – ks) Proportion of DS-TB active 
cases started on treatment that 
are successfully cured 

0.74 0.5-0.9 (48, 49) (for midpoint of 
study) 

(1 – kr) Proportion of MDR-TB active 
cases started on treatment that 
are successfully cured 

0.6  
 

0.2-0.9 For 2012 (2) 

pf Progression rate of latent fast 
individuals to active disease 

0.2 0.1-0.9 Duration of fast latency 
period of 5 years (39) 
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Table 3: Parameter estimates for the median and 95% credible intervals of the four unknown 
parameters from at least 100 5,000 MCMC runs. The fitness cost to resistance is assumed to affect 
transmission in Model 1, progression to active disease in Model 2 and both transmission and 
progression in Model 3. 
 

Model fois foir b f 
1 0.19 (0.04 – 0.42)  0.08 (0.00 – 0.22) 69.95 (53.78 – 86.86) 0.33 (0.17 – 0.54) 
2 0.24 (0.06 – 0.46) 0.13 (0.01 – 0.28) 69.39 (53.46 – 86.49) 0.39 (0.26 – 0.58) 
3 0.20 (0.05 – 0.43) 0.11 (0.01 – 0.27) 70.46 (54.14 – 88.19) 0.57 (0.43 – 0.73) 
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Supporting Information for: The relative fitness of drug
resistant Mycobacterium tuberculosis: a modelling study

of household transmission in Lima, Peru
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1 Time of follow-up in study

Households were followed-up for variable lengths of time in the original household study (Sup-
plementary Figure 1).

Index case is
MDR−TB

Index case is
DS−TB
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Figure 1: Distribution of follow-up times for households with an index case that was MDR-TB (left) or DS-TB
(right).

2



2 Detailed overview of simulation

A detailed overview of all the stages used in the simulation are provided in Figure 2.
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Figure 2: A pictorial representation of the simulation stages.

The model initially sampled 700 household sizes from the distribution of household sizes in
the trial [1]. 213 of these had an initial MDR-TB case, 487 an initial DS-TB case. Tuberculin skin test
(TST) prevalence surveys across Lima have found 52% (95% CI: 48-57%) to be infected with Mtb
[2]. Hence, the number of cases initially latently infected was sampled from a normal distribution
with mean 0.5 and standard deviation of 0.1. Informed by the TB prevalence in Lima, it was
assumed that initially, 98% of these latent infections were with DS-TB strains, 2% with MDR-TB
strains in all households [2]. This proportion was varied in scenario analysis. Random sampling
from a binomial distribution, with this 98% DS-TB, determined the distribution of latent DS-TB
and MDR-TB cases across the 700 households. The proportion of latent cases that were ”latently
fast” cases (Figure 1) was taken to be 3% to reflect that although the proportion of new infections
that are fast latent is 15%, over time these will change state more rapidly than latent slow.
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3 Models 2 & 3: Fit to data

Model 1-3 structures could all replicate the data from the household study as shown in Figure 2 in
the main paper and Supplementary Figures 3 & 4.
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Figure 3: 100 example model fits. Black dots represent Model 2 output that matches to data shown in coloured
ranges for each type of household (HH).
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Figure 4: 100 example model fits. Black dots represent Model 3 output that matches to data shown in coloured
ranges for each type of household (HH).
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4 Probability of remaining free from tuberculosis

We compared the probability of remaining free from TB in our model to that presented in the
original study (Figure 2 in [3]). We had highly similar dynamics to those in the main study (Figure
5).

contacts of drug-susceptible tuberculosis index cases who developed tuberculosis disease (114/
2,362, 4.8%, 95% CI 4.0%–5.8%), but the difference was of borderline statistical significance
(OR = 0.68, 95% CI 0.46–0.99, p = 0.046).

Among the incident cases in MDRTB households that had a drug susceptibility test per-
formed, 86% (95% CI 67%–96%, 24/28) also had MDRTB. Among the incident cases in drug-
susceptible households that had a drug susceptibility test performed, 98% (95% CI 90.1%–
99.7%, 71/73) also had drug-susceptible tuberculosis.

The total follow-up time of MDRTB contacts was 1,425 person-years (mean follow-up time
per MDRTB contact 494 d, standard deviation 199 d), during which 35 second cases arose,
equating to an incidence of 2,456 per 100,000 contact follow-up person-years. The total follow-
up time of drug-susceptible tuberculosis contacts was 2,620 person-years (mean follow-up
time per drug-susceptible tuberculosis contact 406 d, standard deviation 189 d), during which
114 second cases arose, equating to an incidence of 4,351 per 100,000 contact follow-up per-
son-years (multivariate analysis, HR 0.56, 95% CI 0.34–0.90, p = 0.017; Fig 2).

Fig 2. The incidence of second cases of tuberculosis disease in household contacts stratified by index case drug resistance.

doi:10.1371/journal.pmed.1001843.g002

Household Drug-Resistant and Drug-Sensitive Tuberculosis Transmission

PLOSMedicine | DOI:10.1371/journal.pmed.1001843 June 23, 2015 7 / 22
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(c) Model 2
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(d) Model 3

Figure 5: Probability of remaining free from tuberculosis for study (a) and three model structures (b-d).
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5 Trace and density plots for each unknown parameter for main

models

The trace and density for each unknown parameter, from the three models are shown in Supple-
mentary Figures 6-8.
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Figure 6: Trace and density plots for Model 1
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6 Result: scenario analysis: Fit to data

Scenario analysis used the structure from Model 1 with altered parameters. All four could replicate
the data from the household study as shown in Supplementary Figures 9 - 11.
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Figure 9: 100 example model fits. Black dots represent Model 1 output with scenario 1 parameters that
matches to data shown in coloured ranges for each type of household (HH).
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Figure 10: 100 example model fits. Black dots represent Model 1 output with scenario 2 parameters that
matches to data shown in coloured ranges for each type of household (HH).

11



●

●

●

●

●

●

●

●

●
● ●

●●

●

●
●●●

●
●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●
●● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●
● ●

●

●

●

●

●●

●
● ●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

● ●●

●
●●

●

●

●

●
●

●
●
●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

● ●

●

●●
●

●

●

●

●
●

●

●
●●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●

●
●●

●

●
● ●

● ●
●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●● ●●
●

●

●
●
● ●

●

●

● ● ●

●

●

●

●

●

●

●

●
● ●

●

● ●

● ●
●

● ●

●

●●

●
●

●

●

●

●

0

1000

2000

3000

4000

DS−TB in HH
 MDR−index case

MDR−TB in HH
 MDR−index case

DS−TB in HH
 DS−index case

MDR−TB in HH
 DS−index case

Household type

TB
 In

ci
de

nc
e 

pe
r 1

00
,0

00

Figure 11: 100 example model fits. Black dots represent Model 1 output with scenario 3 parameters that
matches to data shown in coloured ranges for each type of household (HH).
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Figure 12: 100 example model fits. Black dots represent Model 1 output with scenario 4 parameters that
matches to data shown in coloured ranges for each type of household (HH).

13



●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●●

● ●
●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●
●

●
●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●●

●

●

●

●

●

●

● ●

●

●
●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

● ●
●

●
●

●

●
● ●

●

● ●

●

●

●● ● ●

●

●

●

●

●

●

●●
●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●●
●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●●

● ●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●●
● ●

●

●

●

●●

●
●●

●

●

●

●

●
●

●
●●

●● ●

● ●
●

●

●

●

●

●

●●

●

●

●

●

0

1000

2000

3000

4000

DS−TB in HH
 MDR−index case

MDR−TB in HH
 MDR−index case

DS−TB in HH
 DS−index case

MDR−TB in HH
 DS−index case

Household type

TB
 In

ci
de

nc
e 

pe
r 1

00
,0

00

Figure 13: 100 example model fits. Black dots represent Model 1 output with scenario 5 parameters that
matches to data shown in coloured ranges for each type of household (HH).
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7 Trace and density plots for each unknown parameter for sce-

nario analysis

The trace and density for each unknown parameter, from the three models are shown in Supple-
mentary Figures 14-18.
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Figure 14: Trace and density plots for Model 1, scenario 1 (latent proportion)
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Figure 15: Trace and density plots for Model 1, scenario 2 (high TB incidence)
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Figure 16: Trace and density plots for Model 1, scenario 3 (low TB incidence)
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Figure 17: Trace and density plots for Model 1, scenario 4 (30 year burn in)
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Figure 18: Trace and density plots for Model 1, scenario 5 (ho household saturation)
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8 Scenario analysis results

The parameters estimates for the five scenarios are given in Table 1 and Figure 19.
Our first scenario analysis explored increasing the initial proportion of households that were

initially infected with latent MDR-Mtb from 2% to 10% (in the pre-study). Fitting the four un-
known parameters revealed that this increased MDR-Mtb latency proportion had very little im-
pact on the estimates.

Our correlation analysis revealed four parameters (other than the four unknown parameters)
to be correlated with TB incidence: the proportion of (re)infected individuals which progress to
“latent fast” (p), the protection from developing active TB upon re-infection (), the proportion
of new active cases which directly become infectious (d) and the progression rate of latent fast
individuals to active disease (pf). The second scenario set these four parameters to be (p, , d, pf) =
(0.25, 0.25, 0.75, 0.9) (high TB incidence) and the third (low TB incidence) to be (0.08,0.45,0.25,0.1).
These second and third scenarios affected the estimates for the external force of infection and per
capita transmission rate as would be expected due to the nature of the change in the natural history
parameters. However, the estimates for the relative fitness (f) remain relatively consistent with our
initial parameter set in Model 1 at approximately 0.30. Scenario 3 has a lower mean fitness at 0.22.

The fourth scenario, extended the initial run-in period from 10 to 30 years. All parameter
estimates are similar to those of Model 1, including the relative fitness. The 95% credible intervals
are larger as would be expected from the larger initial variation that will come from taking initial
conditions from a 3x bigger run-in.

The fifth scenario removed the saturating household effect. The parameter estimates from this
were also highly similar to the main analysis, except for the per capita transmission parameter,
which was lower, reflecting the change to the model structure (no longer divided by household
size).

Scenario fois foir � f

Model 1 0.19(0.04� 0.42) 0.08(0� 0.22) 69.95(53.78�86.86) 0.33(0.17� 0.54)

1 (Greater propor-
tion initially latently
infected with MDR-
TB)

0.19(0.04� 0.42) 0.08(0� 0.22) 70.25(53.9� 87.44) 0.32(0.16� 0.54)

2 (High TB incidence
natural history pa-
rameters)

0.04(0.01� 0.09) 0.02(0� 0.06) 9.2(7.21� 11.38) 0.3(0.16� 0.49)

3 (Low TB incidence
natural history pa-
rameters)

0.4(0.14� 0.67) 0.36(0.12� 0.66) 704.47(606.88 �
896.37)

0.22(0.11� 0.35)

4 (30 years burn-in) 0.11(0.02� 0.32) 0.03(0� 0.12) 51.55(34.91�67.04) 0.41(0.2� 0.73)
5 (No transmission
saturation)

0.18(0.04� 0.41) 0.08(0� 0.21) 9.8(7.54� 12.24) 0.34(0.18� 0.56)

Table 1: Parameter estimates for the median and 95% credible intervals of the four unknown parameters
from at least 100 5,000 MCMC runs for the five scenarios explored within Model 1.
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Figure 19: Fitted parameters for Model 1 and the five scenarios (S1-5). The units for the y-axis of the corre-
sponding plots are: for the external forces of infection (’foi s’ and ’foi r’) proportion infected per year, for the
relative fitness (’f’) there are no units and for the per capita transmission rate (’beta’) the units are effective
contact rate per year.
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