Seven challenges for modelling indirect transmission: vector-
borne diseases, macroparasites and neglected tropical diseases.
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Abstract

Many of the challenges which face modellers of directly transmitted pathogens also arise when
modelling the epidemiology of pathogens with indirect transmission — whether through
environmental stages, vectors, intermediate hosts or multiple hosts. In particular, understanding the
roles of different hosts, how to measure contact and infection patterns, heterogeneities in contact
rates, and the dynamics close to elimination are all relevant challenges, regardless of the mode of
transmission. However, there remain a number of challenges that are specific and unique to
modelling vector-borne diseases and macroparasites. Moreover, many of the neglected tropical
diseases which are currently targeted for control and elimination are vector-borne, macroparasitic,
or both, and so this article includes challenges which will assist in accelerating the control of these
high-burden diseases. Here, we discuss the challenges of indirect measures of infection in humans,
whether through vectors or transmission life stages and in estimating the contribution of different
host groups to transmission. We also discuss the issues of “evolution-proof” interventions against
vector-borne disease.
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EIP extrinsic incubation period
EIR entomological inoculation rate
FOI force of infection

M&E monitoring and evaluation
NTD neglected tropical disease
VBD  vector-borne disease

VC vectorial capacity



Introduction

The majority of core insights on the dynamics of infectious diseases are based on models of directly
or sexually transmitted viruses or bacterial pathogens, as reflected in the other challenge papers in
this issue. However, there are a huge number of pathogens which have multi-component
transmission cycles, involving either vectors or complex pathogen life cycles. These pathogens
present challenges in terms of the basic modelling structures and the extrapolation of insights from
simpler systems to these complex systems and in more policy-related questions, as previously
reviewed by other authors [1-3].

Vector-borne diseases (VBDs), in which vectors, usually insects, take infection from one host to the
next, are responsible for approximately 17% of the global infectious disease burden [4]. The most
commonly modelled VBDs are malaria and dengue [3], but many others cause a notable burden of
disease in humans and other animals. There are a number of novel strategies being considered for
VBDs, particularly for mosquito-borne infections, including biological controls (e.g. Wolbachia) and
genetically modified vectors [5, 6], the success of which depend on our understanding of both the
population dynamics of the vector and the transmission dynamics of the disease.

Macroparasites reproduce via infective stages outside the host, which generates different challenges
for modelling their transmission. Despite a long history of macroparasite modelling (e.g. Anderson
and May [7]), the number of publications in this area is much lower than for directly transmitted
pathogens, so there are many opportunities to apply recent advances in epidemiological modelling
and statistical analyses in this area.

Neglected tropical diseases (NTDs) are a group of diseases that predominantly affect low-income
populations in tropical countries. They include a wide range of infections, causative agents and
routes of transmission, including macroparasites and VBDs, grouped for advocacy rather than
epidemiological reasons. A number of NTDs lack well-defined models, and a diversity of approaches
by multiple research groups is urgently needed [8, 9]. Following several years of advocacy, these
infections are now the subject of intense control efforts with many targeted for elimination over the
next decades [10]. As such, there are opportunities for novel mathematical modelling to inform the
design of these programmes with immediate implementation and feedback, and a potentially large

impact on human health.

Given the diverse nature of the infections covered here, we cannot hope to cover all the challenges
in modelling for the future. We have therefore selected only 7 challenges within the groupings of (a)
improvements in basic model structure, (b) contact processes and reservoirs of infection, (c) indirect
measures of infection and (d) “evolution-proof” control. These challenges range from more technical
modelling questions to clear biological or policy questions. They could arguably also have been
grouped into those in which the structure of available models is not satisfactory or the modelling
technique is not optimum (challenges 1, 4, 5 and 7) and those where the data have not been
collected but the technical conditions to do so are present (Challenges 2, 3 and 6).



a Improvements in basic model structure
1. How can complex macroparasite processes best be modelled?

Macroparasitic infections (e.g. helminths and filarial nematodes) are characterised by relatively
complex lifecycles and long time spans in the human host (from a few months to many years). Part
of the parasite lifecycle is external to the host and there is no direct reproduction within the host,
and therefore the burden of infection (e.g. number of helminths) can only increase through re-
infection. The parasite load determines both transmission and morbidity of such infections.
Importantly, this load can vary enormously between individuals, often well described by a highly
overdispersed negative binomial distribution [11-13], an idea that goes back to Anderson and May
[14, 15]. Thus, for macroparasites, a mathematical model needs to include the actual parasite load of
each host, rather than simply tracking the total number of infectives. It may also be necessary to
represent the various stages of the parasite lifecycle, in which there may be density-dependent
effects, and to allow for parasite gender and mating. Furthermore, it is often desirable to
incorporate immune responses to infection, and thus to include aspects of the infection history of
each host. Multispecies infections are common, presenting additional complexity. While adding
extra variables for each host is in principle straightforward, the increased complexity of additional
state variables and nonlinearities inevitably means that exact results are difficult to obtain. Various
approaches have been taken, including the use of hybrid models [16] where stochastic variation of
one or more variables is ignored. This can be a useful simplifying strategy when different aspects of
the process are happening on very different timescales. For example, in a recent study of
competition and coexistence of multispecies helminth infections [17], it was assumed that the free-
living stage of the parasite is short relative to that of the adult worm and that their number is
deterministic and in equilibrium.

Alternative, fully stochastic macroparasite models focus on particular aspects of the process, thus
enabling analytic results. Often the aim is to eliminate some nonlinear effects or to approximate
them by linear ones. In early work [18, 19], no interaction between the host and its parasites was
allowed. Where appropriate, a useful simplification is to eliminate feedback in the infection cycle
[20] or to assume there is direct infection of one host by another [21]. Analytic results can be
obtained for models in which parasite-induced host mortality is the only source of nonlinearity and
branching process approximations are a valuable tool [22, 23] . Moment closure techniques can give
helpful insight when the nonlinearities have suitably simple product forms [20].

Guidelines are needed on how best to approximate a complex system by a simpler one, clarifying
those features that can reasonably be ignored while retaining those most responsible for
determining its dynamics. There is a need for generic classes of fully stochastic and hybrid models to
be identified that are applicable to groups of macroparasite infections.

b Contact patterns and reservoirs of infection

2. Quantifying contributions of host and vector species for vector-borne infections with complex
reservoirs

For any pathogen with multiple host species, the risk of cross-species transmission in a “target”
host is determined by the spillover force of infection (spillover FOI). For zoonotic infections, where



humans are the target host, this is the instantaneous hazard of animal-derived infection experienced
by a susceptible human. For a directly transmitted zoonosis maintained in a single “reservoir” (non-
human host) species, the spillover FOI can be calculated as the product of the prevalence in
reservoir, the reservoir-human contact rate, and the probability of infection given contact [24]. For
zoonoses with complex reservoirs — i.e., those with multiple host species (and potentially multiple
vector species) contributing to transmission — the spillover FOI is still a useful concept for quantifying
human risk; however, an understanding of how transmission is maintained within and between the
multiple reservoir species becomes essential for identifying both indirect and direct determinants of
human risk and, therefore, for predicting the potential impact of proposed interventions.

Work on the ecology of tick-borne pathogens, such as Borrelia burgdorferi (the cause of Lyme
disease) and Louping-ill virus, has emphasized that the ecology of the vector species — particularly
the effects of different host species on vector abundance — must be taken into account to
understand the contributions of specific wildlife species to pathogen maintenance, and that the role
of a host species in determining risk to a target host may depend on the community composition of
hosts and vectors [25-27]. For zoonoses with complex reservoirs, reduction of human risk via
interventions targeted at animal hosts may be more effective, and will often be more cost-effective,
than interventions targeted at humans; however, a formal framework for quantifying the
contributions of hosts and vectors to pathogen invasion and persistence in specific settings will be
needed to apply these approaches to the identification and evaluation of potential public health
interventions. Identification of such interventions may be particularly important for VBDs occurring
in resource-limited settings, where many of these diseases have the highest burden.

3. Understanding how contact patterns affect the dynamics of macroparasites

There are many open questions about the contributions of different, usually human, hosts to
macroparasite transmission, whether environmental, vector-borne, or with intermediate hosts.
Estimating transmission trees, or contributions of transmission from different groups, now forms a
core part of our understanding of directly transmitted infections and there is a need for some of this
understanding in macroparasitic modelling, in order to inform control programmes. Two example
guestions include:

What processes generate the observed distribution of parasite load amongst hosts? Macroparasitic
infections are unevenly distributed, with some hosts having very high loads whereas others have
very few (see discussion above). Some of this variation is maintained by ‘pre-disposition’ or the
propensity of highly infected hosts to be quickly reinfected with high loads following treatment and
re-exposure. For some macroparasites we also know that there are ‘wormy’ households, in which
there are consistently higher parasite loads. Depending on the process which generates these
aggregations, targeted control methods will have a greater or lesser effect. There is a need for a
model structure which can unify these different observations through mechanistic, rather than
statistical, formulations, in order to inform control programmes.

How can we interpret the age distribution of loads to infer transmission dynamics? Many, but by no
means all, macroparasitic infections have their highest burden in children. Declining loads with age
post-childhood is due to an undetermined combination of changing behaviour and developing
immunity. Given this heterogeneity in loads and uncertainty in mechanism, and whilst still
accounting for the household effects, are children or adults the major drivers of transmission? How



does this affect the design of the most appropriate control strategies? Can we transfer insights from
directly transmitted pathogens to macroparasites, or do the reinfection dynamics mean that
targeted interventions are less efficient? These questions are similar to those posed for VBDs in a
recent review of heterogeneities in transmission [1].

Within the context of directly-transmitted infections, new data streams, including the availability of
next generation sequencing and whole genome sequencing, have played an important role in
improving inference of pathogen transmission patterns. Such data could similarly be used to
improve inference of infection sources and transmission trees for macroparasites [28, 29], and may
be a useful source of information either for comparing mechanistic models or informing model
construction by giving additional insight into the mechanisms that produce observed distributions of
burden.

¢ Indirect measures of infection and disease
4. Measuring vectors to estimate incidence and infection risk in humans

Vector-based surveillance programs are used as a risk assessment tool for many VBDs; however, the
relationships between entomological measures of infection and human risk are non-linear,
complicating the interpretation of such surveillance data. Models can be used to formalize and test
assumptions that underlie such surveillance programs and to account for stochasticity and bias in
the surveillance process itself, which may lead to improved interpretation of data and therefore
more effective planning and intervention.

Entomological data often include trap counts, providing an indication of the relative
temporal and/or spatial vector abundance, and prevalence of infection in the vector population (or
related measures such as the minimum infection rate). Indeed, the product of vector density and the
proportion of vectors that are infectious is closely related to several quantities that can be used to
define risk of infection. For mosquito-borne infections, in particular, these measurements are often
motivated by a desire to estimate vectorial capacity (VC—the expected number of hosts receiving
bites from infectious mosquitoes per infected host per day [30]) or the entomological inoculation
rate (EIR—the expected number of potentially infectious bites received per day by a susceptible host
[30]). Sometimes more specific measurements (such as human landing catches, for malaria) are
taken to directly quantify the human biting rate, which is a component of both VC and EIR.

Similarly, VBD models typically include the following assumptions regarding the relationships
between quantities that define risk and entomological measurements:

* Biting rates are proportion to the ratio of vector density to host density, resulting in invasion
thresholds which are also are proportional to this ratio [31, 32]

* Force of infection (FOl—the instantaneous hazard of infection experienced by a susceptible
(host) individual), which is closely related to EIR, is proportional to the density of infectious
vectors

However, specific model formulations of these quantities often make additional assumptions that
are not accounted for in the application of these formulae to data and the resulting interpretations
of risk. One such assumption that is commonly overlooked (and is ubiquitously invalid, at least for
mosquito populations) is that vector population density is constant. When vector density changes,



prevalence of infection in vectors alone is insufficient to determine EIR, so the relationship between
vector prevalence and risk breaks down, as does the commonly used approximation that the FOI is
proportional to host prevalence [33]. Nevertheless, risk assessments often use vector infection
prevalence or related measures as the outcome of interest, as if this were a measure of risk—
resulting in unaccounted for nonlinear relationships between statistical assessments of “risk” and
guantities of actual interest.

A more direct link between entomological measurements and quantities that define risk has
been made for infections transmitted by some types of vectors — such as the use of density of
infected nymphs, which is proportional to FOI, as the primary entomological indicator of risk in Lyme
disease surveillance [34], however, even in these systems, modifying assumptions regarding
homogenous biting, well-mixed encounters, temperature-driven changes in the external incubation
period and vector life cycle, and other biological factors may be required to develop robust tools for
risk assessment.

Rigorous, iterative frameworks should be sought to improve the links between the models
used for risk assessment and the data to be interpreted [35, 36], and models should additionally
account for the processes by which the entomological measurements themselves are generated.
This area is ripe for leveraging recent statistical and computational developments that allow fitting
of models to data via explicit treatment of latent variables involved in mechanistic processes and
specification of observation models that can account for both stochasticity and known biases in the
mechanisms by which data are generated [37].

5. Develop robust models for interpreting indirect measures of macroparasitic infection

Relating models to data is a general epidemiological challenge [38]. However, for almost all
macroparasitic infections, our most commonly used measures of the intensity of infection are
indirect. This is particularly true of helminth infections, where we very rarely observe the adult
worm burden, but rather transmission stages, such as microfilariae or egg output. Where worm
burdens can be measured, we know that there are complex, non-linear, density-dependent
relationships between these indirect measures and the underlying worm burden. For example, there
is a density dependent relationship between worm burden and egg output for soil-transmitted
helminths, which is further complicated by variability in egg output from one sample to the next and
from one day to the next. As discussed above, models of macroparasitic diseases are formulated in
terms of the dynamics of the various stages of the parasite’s development. In order to fit models to
such data, it is necessary to infer information about the distribution of parasites from measurements
of egg output and prevalence. As yet, little attention has been paid to this process.

A key modelling question is: what models should be used to capture the relationship between
parasites and egg output (or other indirect measurements)? This includes the dependence of egg
output on parasite density and the mode of sexual reproduction of the parasite as well as the
effectiveness of the measurement protocol used to count eggs.

Equally, an understanding of the nature and sources of variance in egg production and measurement
are essential to any statistical inference of underlying worm distributions. Given that variances are
characteristically large, it will be necessary to develop statistical approaches that can integrate many



different sources of relatively ‘weak’ data to arrive at the strongest possible inference for underlying
parasite populations.

The development of probabilistic models, as described above, could have implications for
study design and monitoring and evaluation (M&E). Given a particular statistic of interest (e.g. mean
parasite burden in schoolchildren), it would be possible to optimise study design and the process of
M&E to maximise the information recovered from the target population as a function of the cost.

6. Estimating burden for NTDs

NTDs are by definition underobserved, often because of limited access to health care or lack
of diagnostic or recording capabilities. This is compounded by the difficulties due to indirect
measures of infection (see challenges above). In many settings, cases are found through active
detection campaigns, but otherwise remain unrecorded. This can lead to reportedreported case
series that do not reflect the true dynamics: more investigation leads to better detection and thus
more reported cases, while a reduction of reported cases can be a consequence of either effective
control or a breakdown in surveillance. Accurate burden estimates, however, are crucial to predict
the likely impact of, and resources needed for, control efforts. The challenge here is to develop
models that can combine patchy data to fill the gaps and produce reliable burden estimates in the
absence of routine surveillance. Using state-of-the-art methods for model fitting and inference (e.g.,
Monte-Carlo-based methods [39-41]), transmission dynamics can be combined with a variety of data
taken at different time points (e.g., limited routine surveillance combined with active case detection)
to estimate the most likely underlying burden. Moreover, these could yield estimates for
disability/quality-adjusted life years lost, an important currency in the economics of disease control.
Combined with age structure or spatial information, such analyses could make a valuable
contribution for targeting control efforts within the WHO roadmap [10].

d Evolution-proof control in the presence of large-scale interventions
7. Evolution-proof control of vectors

VBD lifecycles present multiple targets for control efforts, e.g. reducing vector density by insecticides
or shortening the duration of human infectiousness using drug treatments. Deployment of an
effective control measure against an agent inevitably imposes a strong selective pressure for
evolutionary escape from that measure. Vector-borne infections are no exception: control efforts
against malaria, as an example, are threatened by evolution of resistance to insecticides [42] and
antimalarial drugs. Behavioural evolution of vectors, for instance shifting from indoor to outdoor
biting in response to control measures such as indoor residual spraying or insecticide-laced bed nets
is an additional concern [43].

Understanding the evolutionary implications of control measures is, therefore, a key task. Much of
the work that has been undertaken has direct analogies to questions asked for directly transmitted
infections, such as whether multiple forms of a control (e.g. insecticides or drug treatments) should
be used in combination or in a cyclic fashion. There are, however, some important differences: the
observation that the latent period of infection within the vector — the extrinsic incubation period
(EIP) — is often a substantial fraction of the average adult female lifespan raises ways to lessen the
evolutionary impact of control, dubbed ““evolution-proof control" [44].



It has long been realized that the lengthy EIP and the need for a female mosquito to feed twice to
first acquire and then transmit the pathogen means that old females are responsible for the majority
of transmission events and that even modest reductions in mosquito lifespan could result in
significant reductions in transmission [45]. Consequently, “late-acting" control measures, such as
late-acting insecticides [44] or life-shortening Wolbachia bacteria [5], could effectively control
transmission while imposing much reduced selection pressure on the mosquito population, acting
after the majority of a mosquito's offspring have been produced. Evolution might still have the last
word here as there would be pressure for the pathogen to shorten its EIP.

Modelling challenges here include exploring the impacts of combinations of control measures and
whether there are epidemiological and/or evolutionary synergies to using multiple control
measures, even if some are somewhat ineffective individually. Consideration of a wide range of
control options — including release of sterile mosquitoes, paratransgenesis, and late-acting or life-
shortening mosquito-control techniques in combination with more traditional measures — and their
combined evolutionary implications could yield substantial insights that would be useful reducing
burden and eventual elimination [5, 44, 45].

Summary

This article covers a huge range of infections for which we have an increasing amount of
experimental, epidemiological, entomological, ecological, clinical and monitoring and evaluation
data. Many of the issues of how to control and even eliminate these infections will be addressing
challenges in other articles in this issues [46, 47], but they pose unique challenges either due to their
complexity (through vector-borne transmission or their macroparasitic life cycles), or due to a
limited amount of biological, ecological or epidemiological data. They are potentially the infections
where most novel epidemiological insights will be made over the coming decades.
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