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Abstract

The Katanga region in the Democratic Republic of Congo (DRC) has been struck by
repeated epidemics of measles, with large outbreaks occurring in 2010–13 and 2015.
In many of the affected health zones, reactive mass vaccination campaigns were
conducted in response to the outbreaks. Here, we attempted to determine how ef-
fective the vaccination campaigns in 2015 were in curtailing the ongoing outbreak.
We further sought to establish whether the risk of large measles outbreaks in differ-
ent health zones could have been determined in advance to help prioritise areas for
vaccination campaign and speed up the response. In doing so, we first attempted to
identify factors that could have been used in 2015 to predict in which health zones
the greatest outbreaks would occur. Administrative vaccination coverage was not
a good predictor of the size of outbreaks in different health zones. Vaccination cov-
erage derived from surveys, on the other hand, appeared to give more reliable es-
timates of health zones of low vaccination coverage and, consequently, large out-
breaks. On a coarser geographical scale, the provinces most affected in 2015 could
be predicted from the outbreak sizes in 2010–13. This, combined with the fact that
the vast majority of reported cases were in under-5 year olds, would suggest that
there are systematic issues of undervaccination. If this was to continue, outbreaks
would be expected to continue to occur in the affected health zones at regular inter-
vals, mostly concentrated in under-5 year olds. We further used amodel of measles
transmission to estimate the impact of the vaccination campaigns, by first fitting a
model to the data including the campaigns and then re-running this without vacci-
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nation. We estimated the reactive campaigns to have reduced the size of the overall
outbreak by approximately 21,000 (IQR: 16,000–27,000; 95% CI: 8300–38,000) cases.
There was considerable heterogeneity in the impact of campaigns, with campaigns
started earlier after the start of an outbreak being more impactful. Taken together,
these findings suggest that while a strong routine vaccination regime remains the
most effective means of measles control, it might be possible to improve the effec-
tiveness of reactive campaigns by considering predictive factors to trigger a more
targeted vaccination response.

Introduction

There have been repeated outbreaks of measles in the Democratic Republic of
Congo (DRC). The Katanga region (formerly known as Katanga province) is in the
southeast of the country bordering Zambia and comprises the provinces of Haut-
Katanga, Haut-Lomami, Lualaba and Tanganyika. It has experienced large periodic
measles outbreaks, such as in 2006–07, 2010–13 (Grout et al., 2013; Mancini et al.,
2014). In response to these, reactive mass vaccination campaigns have been con-
ducted to protect those assumed to be at risk both within the outbreak area and
beyond.

Standard measles epidemic responses include reinforcing measles surveillance
in affected areas, providing free care to reduce measles mortality, and reactive vac-
cination campaigns in order to control measles transmission. In collaboration with
the World Health Organization (WHO) Regional Office for Africa (AFRO) and the
United Nations Children’s Fund (UNICEF), Médecins Sans Frontières (MSF) sup-
ported the Ministry of Health to respond to various measles outbreaks including
two major measles outbreaks in the Katanga region. Firstly, in 2010–13, a measles
epidemic was reportedwith over 96,000 suspected cases reported, 77% of which oc-
curred in children under 5 years of age, and more than 1400 deaths (Mancini et al.,
2014). In 2011, in response to the ongoing epidemic, MSF vaccinated more than 1.8
million children 26 of the 68 health zones in the Katanga region (Grout et al., 2013).
Secondly, in February 2015, a new measles epidemic started in Katanga, DRC, last-
ing the whole year and resulting in over 40,000 cases and more than 400 deaths
in 2015 (UN Children’s Fund, 2015). MSF responded with the standard epidemic
responses including a reactive vaccination campaign in order to stopmeasles trans-
mission during epidemics, targeting more than 25 health zones.

The time interval between the outbreak starting in different parts of Katanga
and the vaccination response implemented varied. Previously, modelling studies
in Niger have demonstrated that even late vaccination intervention in response to
an outbreak could prevent a large number of cases, though early intervention will
always have a larger impact (Ferrari et al., 2008; Grais et al., 2008; Dubray et al.,
2006; Grais et al., 2006). However, this may be context-specific and vary with local
epidemiology and outbreak patterns. The response to the Katanga outbreak pro-
vides an opportunity to retrospectively study the effectiveness of the campaigns
conducted in mitigating excess morbidity. More generally, important lessons could
be learned about the relationship between response times and effectiveness of cam-
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paigns, and how campaign targets could be selected in the future to ensure greatest
impact.

We studied the 2015 measles outbreak and responsive mass vaccination cam-
paigns conducted as part of the standard epidemic response to assess whether the
most-affected areas could have been predicted from information on previous out-
breaks and administrative or otherwise estimated vaccination coverage. We further
investigated the outbreak in several health zones using a mathematical model of
measles transmission, to quantify the impact of vaccination campaigns that were
conducted in those areas.

Methods

Data sources and cleaning

Suspected measles cases (WHO definition) from 2010–16 were collated from the in-
tegrated disease surveillance (IDS) system, described inMancini et al. (2014). These
data are split into age groups 1-4 years and 5 years and over, at the level of health
zones. The database did not contain any information on cases under the age of 1
year.

Administrative coverage data from 2009-16 collected by the Ministry of Health
was available as the number of doses administered per week was collected at the
level of health zones, separated into age groups 9-11 months and 12-23 months.

Population denominators were extracted from the coverage data. Since the last
census in DRC prior to this study had been done in 1981, these numbers are subject
to considerable uncertainty.

We further used vaccination coverage estimates from a previous study by Taka-
hashi et al. (2017). These used data collected as part of the Demographic andHealth
Survey (DHS) in 2013–14, extrapolated from geo-located information on children’s
vaccination status from vaccine cards and parental recall. We averaged the esti-
mates by month of age to arrive at the proportion of under-5 year olds that were
unvaccinated, that is had received no dose of measles-containing vaccine.

Information on reactive mass vaccination campaigns conducted in 2015 was ex-
tracted from MSF reports. The total number of vaccine doses administered was
collated at the level of health zones, and at various temporal resolutions from days
to a single number of doses delivered for a whole campaign.

Factors that could predict outbreak size

We tested the predictability of outbreaks from demographic factors and outbreak
and vaccination history in a negative binomial Generalized Linear Model with log-
arithmic link. Robust standard errors and p-values were calculated using the sand-
wich R package (Zeileis, 2004; Zeileis, 2006). The number of suspected cases re-
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ported during the 2015 outbreak at the health zone level wasmodelled as a function
of health zone population size, the number of cases in the 2010–13 outbreak, MoH
administrative and estimated vaccination coverage.

Modelling measles with mass vaccination campaigns

We modelled measles transmission at the level of health zones using a stochastic
transmission model with a fixed time step of 2 weeks, corresponding to the gen-
eration time of measles (Bjørnstad et al., 2002). At each time step t, the number of
new infections in health zone i, Iitwas drawn from a negative binomial distribution
with mean λitSi(t−1) and shape m, allowing for overdispersion of transmission, or
superspreading (Lloyd-Smith et al., 2005):

Iit ∼ NB(λitSi(t−1),m)

where Si(t−1) and Ii(t−1) are the number of people susceptible and infected, re-
spectively, at time t− 1, and λit is the force of infection experienced by susceptibles
in health zone i at time t:

λit = R0

Ii(t−1)

Ni

where Ni is the population size of health zone i, R0 is the basic reproduction
number.

When a mass vaccination campaign was conducted, the number of susceptible
people immunised was calculated by multiplying the number of doses adminis-
tered with the proportion of the population still susceptible Sit/Ni, and a campaign
efficiency factor ei, estimated as part of the inference procedure described below.
This factor comprises both vaccine efficacy and the efficiency in targeting suscep-
tible children, which were not identifiable separately. With a perfect vaccine and
random distribution, this would take a value of 1. If vaccines were preferentially
given to susceptibles, it would take values of greater than 1 (subject to vaccine ef-
ficacy). If vaccines were preferentially given to already immune children, it would
take values of less than 1.

During a two-week span, half of vaccinationsweremodelled to be administered
before transmission occurred and half afterwards. While the measles vaccine takes
2 weeks to come into effect, it provides potentially high level of protection from 72
hours after administration (Barrabeig et al., 2011; Kutty et al., 2013; National Health
Service, 2017). We therefore assumed that vaccination starts to fully immunise a
child instantaneously.

For the counterfactual scenarios of how the outbreakswould have evolvedwith-
out a reactive mass vaccination, we simulated the model from the time of the mass
vaccination campaigns, but without reducing the number of susceptibles as a con-
sequence of vaccination. We then drew samples from the joint distribution of tra-
jectories and observations, to obtain alternative trajectories of observed cases. To
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evaluate the impact of the campaigns, we calculated the reduction in the number of
cases observed in each of the trajectories. If this yielded a negative difference (i.e., if
random sampling yielded alternative trajectorieswithmore cases than the observed
ones), we treated the impact as 0 (i.e., same number of cases in both scenarios).

Selection of health zones for fitting and estimating populations

The health zones selected for the dynamic model were ones that reported more
than 10 cases in at least one week in 2015 and had a reactive mass vaccination cam-
paign with the number of doses delivered and results from a follow-up coverage
survey available. A total of eight health zones were modelled, including the one
that saw most cases (Malemba-Nkulu, 8856 reported cases) and 7 of the 13 health
zones with most cases in 2015: Ankoro (3910), Kinkondja (2773), Mukanga (2723),
Bukama (2632), Songa (928) and Kabalo (904).

Since a large proportion of cases was found in children (77% in 1-to-5 year olds,
with no further age-breakdown available), and none of the vaccination campaigns
targeted over-15 year olds, we modelled measles transmission to be occurring ex-
clusively in under-5 year olds. The relevant population sizes were estimated as the
number of doses administered in the vaccination campaigns divided by the cover-
age estimated from concurrent vaccination surveys. Where vaccination campaigns
were limited to under-5 or under-10 year olds, we estimated the total population
size under 15 as 2.72 or 1.39 times the estimated population size, respectively, based
onmultipliers used for estimating the sizes of age groups in the administrative cov-
erage data provided.

Model fitting and counterfactual scenarios

The model was fitted simultaneously to the eight selected health zones. The like-
lihood of observing bi-weekly incidence Dit in health zone i at time t was taken to
follow a negative binomial distribution with fixed overdispersion ϕ.

Dit ∼ NB(ρIit + µ, ϕ)

where ρ is the proportion of cases that is reported, $µ is the rate of background
reporting of measles, either due to cases that were not part of the epidemic or mis-
classification, for example of rubella cases, and ϕ is the reporting overdispersion.

The value of the basic reproduction numberR0, the efficacy of mass vaccination
ei, mean reporting rate ρ, background reporting rate m, observation overdisper-
sions, the proportion immune ri0 in health zone I and the mean number of individ-
uals infectious Ii0 at the first data point with at least 10 cases in health zone i (taken
to be the start of the time series), were all estimated as part of the inference proce-
dure, as well as likely trajectories of the state variables. The reporting rate ρi and
initial number infectious Ii0 was allowed to vary between health zones. The prior
distribution on the mean reporting rate was weakly informed by a coverage survey
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that was conducted in Kabalo. The initial proportion immune ri0 was estimated
with a mean and lower bound given by the vaccination coverage per health zone
vi estimated in (Takahashi et al., 2017). Informed or regularising prior distributions
of the parameters to be estimated are shown in Table 1.

Table 1: Prior distributions of parameters used in the transmission model. The distribu-
tion of the basic reproduction number was truncated at a lower bound of 0. The propotion
initially immune was truncated to be between vi and 1. The mean and actual proportions
reported were truncated to be between 0 and 1. The number initially infectious were truncte-
dat a lower bound of 0.

Parameter Symbol Prior distribution Source
Basic reproduction number R0 Gaussian(15, 5) Anderson and May (1991)
Overdispersion of transmission m Gamma(1, 0.1) n/a
Efficacy of campaigns ei Gaussian(1, 1) n/a
Background reporting µ Gamma(1,1) n/a
Proportion initially immune r0i Gaussian(vi, 1) Takahashi et al. (2017)
Mean proportion reported ρ Gaussian(0.059, 0.009) Médecins Sans Frontières (2015)
Proportion reported ρi Gaussian(ρ, 0.1) n/a
Mean initially infectious I0 Gamma(2, 5) n/a
Number initially infectious I0i Gamma

(
I0
r0i

,
√

I0
r0i

)
n/a

Overdispersion of reporting ϕ Gamma(1, 0.1) n/a

The model was fitted to the data using a particle filter in combination with
Metropolis-Hastings Markov chain Monte Carlo (pMCMC) with the libbi software
library (Murray, 2013) as implemented in the RBi package using the statistical soft-
ware R (Jacob and Funk, 2019; R Core Team, 2017). The number of particles and
proposal distribution was adapted using the RBi.helpers package (Funk, 2019), be-
fore the pMCMC sampler was run to generate 4096 samples after thinning, with
262,144 particles. The inference pipeline was run on an Nvidia Tesla P100 16GB
NVLink GPU.

Results

Outbreak size

In total, 40,562 cases and 485 deaths were reported in the Katanga region over
the course of the year (case-fatality ratio: 1.2%). The majority of cases were re-
ported from Haut-Lomami (23,984, 59%) and Tanganyika (12,110, 30%) provinces,
with the outbreak in Tanganyika peaking significantly later than the one in Haut-
Lomami (Fig. 2). Of the 68 health zones, 16 reported over 90% of cases (Fig. 1).
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Figure 1: Number of cases by health zone in the Katanga region, 2015.
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Figure 2: Number of cases by age group and province in Katanga, 2015.
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Predictability of outbreak size

There was a positive correlation between reported incidence in the 2010–13 out-
break and the 2015 outbreak (Pearson’s r=0.31, p=0.01, Fig. 3). All the health zones
with more than 10 cases per 1000 in 2015 (Malemba-Nkulu, Kinkondja, Manono,
Ankoro, Lwamba, Mitwaba, Mukanga, Bukama) had also reported more than 5
cases per 1000 in 2010–13.
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Figure 3: Incidence (number of cases divided by estimated population size) in 2010–13 vs
2015. Health zones with more than 5 cases per 1000 in 2015 are indicated in black, and
other health zones with more than 10 cases per 1000 in 2010–13 in red.

Further, there was a positive correlation of reported incidence in 2015 and ad-
ministrative vaccination coverage, and a negative correlation with coverage as es-
timated from DHS data (Fig. 4).

Combining these factors and population size in a regression model confirms
these correlations, with coefficients corresponding to the number of cases in 2010–13
and vaccination coverage estimated by DHS as strongest predictors of the number
of cases that occurred in 2015 (Table 2). Population size and routine vaccination
coverage asmeasured by the EPI programme did not have a strong influence on the
number of cases in 2015. Correlation between model predictions and true number
of cases was 0.3 (95% CI 0.1-0.5, p=0.01, Fig. 5).

To further investigate the relationships underlying the results, we tested an ad-
ditional model variant, where we distinguished the four provinces comprising the
Katanga region in the model, to determine whether effects were being identified at
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Figure 4: Vaccination coverage versus reported incidence (number of cases divided by es-
timated population size) in 2015. Linear trends are indicated by blue lines, with 95% con-
fidence intervals indicated in grey. A) Mean vaccination coverage in 2010–15 as measured
by the EPI programme. B) Vaccination coverage estimated from DHS data.

Table 2: Regression coefficients for model of case numbers in 2015, with lower and upper
95% confidence interval limits.

Coefficient Estimate p-value Lower limit Upper limit
(Intercept) 5.7 <0.001 5.4 6.1
Population size 0.1 0.8 -0.4 0.6
Number of cases 2010–13 0.8 <0.001 0.2 1.3
Mean EPI coverage 2010–15 0.3 0.09 -0.1 0.7
DHS coverage estimate -1.3 <0.001 -1.8 -0.9
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the fine level of the health zone or the coarser province level. In that case, province
as a categorical explanatory variable in the regression replaced some of the predic-
tive value both of the number of cases in 2010–13 (regression coefficient 0.4, p=0.05)
and the coverage estimate from DHS data (-1.1, p<0.001), but both retained predic-
tive value, the coverage estimate strongly so. This suggests that some predictive
value of case numbers in 2010–13, and strong predictive value of the coverage esti-
mate was retained at the lower level of the health zone.
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Figure 5: Predictions from the regression model vs. true number of cases. As in Fig. 3,
health zones with more than 5 cases per 1000 in 2015 are indicated in black, and other
health zones with more than 10 cases per 1000 in 2010–13 in red.

The impact of mass vaccination campaigns

To investigate the impact of the mass vaccination campaign in more detail, we fit-
ted a dynamic model to the case trajectories in 8 health zones (Fig. 6). We esti-
mated a basic reproduction number of 4.3 (mean; interquartile range, IQR: 4.0–4.5)
and an average reporting rate of 24% (IQR: 19%-29%), corresponding to a total of
77,000 (IQR: 73,000–81,000; 95% CI: 66,000–91,000) estimated cases from 19,079 re-
ported cases in the 8 health zones. On average, 55% (IQR: 49%-62%) of under-5 year
olds were estimated to have been immune before the outbreak. The estimated cam-
paign efficacy factor ranged from 0.21 (IQR: 0.09–0.31) in Kinkondja to 0.59 (IQR:
0.33–0.83) in Ankoro.

In total, we estimate that 21,000 (IQR: 16,000–27,000; 95% CI: 8300–38,000) cases
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Figure 6: Model fits (black) to the 2015 data and counterfactual scenarios without mass
vaccination campaigns (red). The data are shown as black dots, and periods of mass vac-
cination campaigns as blue vertical bars. Median fitted trajectories are shown as lines,
50% (dark grey) and 95% (light grey) credible intervals as shades.
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Table 3: Summary of posterior estimates.

Parameter Symbol Posterior mean (IQR)
Basic reproduction number R0 4.3 (4.0–4.5)
Overdispersion of transmission m 0.17 (0.14–0.2)
Efficacy of campaigns (mean) ei 0.34 (0.14–0.48)
Background reporting µ 1.4 (1.0–1.7)
Proportion initially immune (mean) r0i 0.55 (0.49–0.62)
Number initially infectious (mean) I0i 66 (46–78)
Proportion of cases reported (mean) ρi 0.24 (0.19–0.29)
Overdispersion of reporting ϕ 0.044 (0.022–0.061)

were averted by the vaccination campaigns in the seven health zones analysed, cor-
responding to relative reduction in case load of 21% (IQR: 17%–25%, 95% CI: 9.3%–
34%). Of the approximately 250,000 doses delivered to under-5 year olds in the
8 health zones, we estimated 22,000 (IQR: 17,000–26,000, 95% CI: 11,000–37,000) or
9.2% (IQR: 7.2%–11%, 95%CI: 4.5%–15%) of administered doseswent to susceptible
children.

There was heterogeneity in impact between health zones. The greatest abso-
lute impact achieved by a mass vaccination campaign in the health zones investi-
gated was in Malemba-Nkulu with 6800 (IQR: 4000–9100; 95% CI: 0–17,000) cases
averted with 26,208 doses, while the greatest relative impact was in Kabalo with
a 33% (IQR: 17%–54%; 95% CI: 0%–73%) reduction in case load from an estimated
20,727 doses (Table 4). On the other hand, only 230 (IQR: 0–810; 95% CI: 0–2400) or
2.4% (IQR: 0%–11%; 95% CI: 0%–29%) of cases were estimated to have been averted
in Bukama from an estimate 31,400 doses. Speed of implementation of the mass
vaccination campaign (or shorter delay to implementation) was highly correlated
with a greater relative reduction of cases (Pearson’s p = -0.85, p=0.008).

Table 4: Absolute and relative impact of mass vaccination campaigns in different health
zones. Estimates shown are posterior means. The delay shown in the last column is the
number of weeks between the start of the outbreak (end of the first two-week period with
more than 10 cases) and the beginning of the vaccination campaign.

Doses Cases Relative Delay
Health zone (est.) averted (IQR, 95% CI) reduction (IQR, 95% CI) (weeks)
Ankoro 26,199 4800 (2200–7300, 0–12,000) 24% (13%–37%,0%–55%) 11
Bukama 34,100 230 (0–810, 0–2400) 2.4% (0%–11%,0%–29%) 25
Kabalo 20,727 3000 (1000–4700, 0–9100) 33% (17%–54%,0%–73%) 13
Kinkondja 20,792 510 (0–970, 0–2800) 5.5% (0%–12%,0%–29%) 20
Lwamba 44,148 3400 (870–5400, 0–12,000) 21% (6.7%–35%,0%–61%) 14
Malemba-Nkulu 46,330 6800 (4000–9100, 0–17,000) 23% (16%–31%,0%–47%) 14
Mukanga 30,133 2200 (670–3500, 0–6800) 15% (5.7%–25%,0%–44%) 17
Songa 19,660 970 (240–1500, 0–3300) 19% (6.2%–32%,0%–54%) 11

Discussion

In spite of repeated strategic and reactive vaccination campaigns, largemeasles out-
breaks continue to occur in Katanga, DRC, causing significant morbidity and mor-
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tality. Strategies to mitigate the burden of measles are urgently needed. Here we
conducted both predictive and retrospective modelling of the measles outbreaks in
Katanga in 2015, with the aim to evaluate the impact of the vaccination response as
well as potential for improvement.

The predictability of outbreaks is related to the quality of the available data. We
found little relationship between reported administrative vaccination coverage and
observed incidence. In fact, therewas a small positive correlation, that ismore cases
occur where vaccination uptake as indicated by the EPI programme is higher. This
could be because high routine vaccination rates might be an indicator of surveil-
lance quality and therefore case reporting. At the same time, Strategic Immunisa-
tion Activities were conducted across Katanga after the 2011 outbreak (Scobie et al.,
2015). We did not have access to any details of these campaigns, which may have
been targeted at areaswith low reported vaccination rates, thus raising immunity in
those health zones. Not all of the suspected cases included in this study may have
been measles and instead have been misdiagnoses due to rubella or other causes of
rash (Graaf, 2015). While we included a parameter for misclassification in the mod-
elling analysis, this is difficult to identify and may be an underestimate. Lastly,
there is uncertainty around the population estimates used as denominator when
estimating coverage, as high rates of migration and urban growth make existing
data quickly outdated.

Vaccination rates as estimated from cluster surveys as part of the DHS pro-
gramme, on the other hand, were well correlated with case data, with higher vac-
cination rates corresponding to lower case burden. These estimates encompass
all vaccination activities and not just routine immunisation, and they do not suf-
fer from denominator issues caused by uncertainty in the population sizes within
health zones.

Reconstructing the outbreak with a mathematical model of the case trajectories
suggested that reactivemass vaccination campaigns reduced the case load substan-
tially, and more so the earlier it was implemented. We estimated that tens of thou-
sands of susceptibles were immunised during those campaigns and, consequently,
tens of thousands of cases averted in under-5 year olds. While the estimated over-
all proportion of doses that went to susceptibles may appear low at approximately
10%, this must be seen in the context of conducting vaccination campaigns during
ongoing outbreaks, where part of the population may already have been infected
and thus naturally immunised. In all health zones, we estimated that vaccines were
preferentially given to immune children, who may have been immunised through
routine vaccination, been targeted in previous campaigns, or infected and acquired
natural immunity during the ongoing or previous outbreaks. At the same time, the
estimated 21,000 cases averted correspond to a reduction in burden of over 20%. In
the health zonesmodelled, the case-fatality ratio in the reported datawas 1.2%, sug-
gesting that around a hundred infant lives were probably saved by the campaigns.

Our transmission model suffered from several limitations. We did not have ac-
cess to an age breakdown of cases older than 5 years, and information on under-1
year olds was missing completely. Because of this, we only modelled transmission
in under-5 year olds. At 77% of reported cases, it seems safe to assume that trans-
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mission in under-5 year olds was driving the outbreaks. The estimated basic re-
production number of 4.3 (IQR: 4.0–4.5) is small in comparison with other settings,
possibly because transmission does not occur in school-like settings with closemix-
ing of large numbers of children, but rather households and communities affecting
children before they reach school age.

The estimated impact of the campaignsmight have been greater if cases averted
in over 5-year olds had been taken into account. We further ignored any spatial
progression of the outbreak or connectivity between health zones and modelled
each area in isolation. In reality, mass vaccination campaigns that reduced cases in
one area may well have prevented subsequent cases in nearby areas in other health
zones. Lastly, we assumed constant reporting rates. If, on the other hand, reporting
quality changes between regions or over time, it would affect our fits which would
interpret these changes as changes in transmission rather than reporting.

In spite of enormous efforts, measles is proving difficult to control in Katanga.
On the 10th June 2019, theDRCMinistry ofHealth officially declared a newmeasles
outbreak in 23 out of the 26 provinces of DRC, with initial cases for this outbreak
reported in late 2018. This new measles outbreak coincided with an ongoing Ebola
outbreak in the North Kivu and Ituri provinces of DRCwhich had begun in August
2018. There have been suggestions that the diversion of resources and attention
towards the Ebola response may have reduced the healthcare capacity required to
respond to a surge in measles cases (Arie, 2019). Although at the time of writing,
the health zonesmost affected by themeasles outbreakwere outside the area where
Ebola was mostly concentrated, it has been shown during the 2013–16 outbreak in
West Africa that reduced vaccination services as a result of an Ebola outbreak can
have a severe impact on measles circulation (Takahashi et al., 2015; Colavita et al.,
2017; Wesseh et al., 2017).

The ability to partly predict the case load in 2015 from outbreaks in 2010–13 at
the province level suggests that there might be underlying problems in the provi-
sion of routine immunisation services that did not change in the intervening time.
At the end of outbreaks as big as the ones occurring in Katanga, not many children
are left susceptible, whether a mass vaccination campaign has been conducted or
not. The fact that another big outbreak could happen so soon after the last suggests
a rapid increase in susceptibles that have not been served by the routine vaccina-
tion programme, and strengthening this should be a priority. At the same time, it is
clear that the mass vaccination campaigns only prevent part of the observed cases,
partly because of unavoidable delays in confirming an outbreak and launching a
campaign. Preventive strategies based on predictive models have a potential to
have a much greater impact if they can prevent outbreaks altogether, but their use
is based on the predictive potential of the models used. We found that vaccination
estimates based on a spatial model applied previously to vaccination survey data
was a good predictor of outbreak size at the relatively fine level of health zones.
There is enormous promise in using such estimates to guide strategic immunisa-
tion activities and close any existing gaps in immunity. As has been proven many
times over, it is only through strong and comprehensive routine vaccination, sup-
plemented by strategic campaigns where necessary, that sustained measles control
and, ultimately, elimination can be achieved.
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