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Abstract

Traditionally, the spread of infectious diseases in human populations has been

modelled with static parameters. These parameters, however, can change when

individuals change their behaviour. If these changes are themselves influenced

by the disease dynamics, there is scope for mechanistic models of behaviour to

improve our understanding of this interaction. Here, we present challenges in

modelling changes in behaviour relating to disease dynamics, specifically: how

to incorporate behavioural changes in models of infectious disease dynamics,

how to inform measurement of relevant behaviour to parameterise such models,

and how to determine the impact of behavioural changes on observed disease

dynamics.
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Introduction

Human behaviour may be influenced by a myriad of factors ranging from

media to person-to-person communication. The behavioural response towards

∗Corresponding author. E-mail: sebastian.funk@lshtm.ac.uk

Preprint submitted to Epidemics September 19, 2014



an infectious disease (e.g., whether to get vaccinated, or whether to stay at home

during an epidemic) is shaped by a combination of these influences, and how5

people evaluate them with respect to the alternatives. Additionally, behavioural

responses are influenced by various factors, such as religious or cultural beliefs

and norms, that can be clustered both spatially and socially. Even within social

groups, there is individual-level variability, and responses are constrained by

our personal circumstances. For example, people may be asked or feel obliged10

to turn up for work irrespective of whether they feel at risk of infection.

The interrelationship between the spread of an infectious disease and the

behaviour towards it is subject to a number of dynamic feedbacks. Specifically,

an outbreak of an infectious disease can trigger behavioural responses, which

in turn can affect the course of the epidemic. Mathematical models provide15

an invaluable tool to study such feedbacks. Yet, behavioural dynamics have,

until recently, rarely been incorporated in models of infectious disease dynamics.

Taking into account individual behavioural heterogeneities and shifts in such

models can be important because (1) predictions may be unreliable if they

fail to take into account behavioural dynamics and (2) most policies target20

individual-level behaviour and not macro-scale dynamics.

To formulate models in which infectious disease dynamics and behaviour

are interdependent, we need to understand the mechanisms behind any mutual

influence. To what extent do people themselves, their social “networks”, me-

dia opinion leaders, or health care providers affect individual behaviour? And25

how are the perceptions that determine behaviour influenced by properties of

an infection, such as its prevalence or severity? There are often several ways

of interpreting the same influence; in the case of disease prevalence, for exam-

ple, people could respond to current prevalence, recent prevalence, or historical

prevalence. Disease severity also affects behaviour [1], but the relationship is30

not necessarily straight-forward: different responses will be prompted by a dis-

ease that infects 50% of a population and kills 1% of those infected versus an

infection that infects only 0.5% but kills them all.

The following challenges relate to the overarching questions of how to in-
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corporate behavioural changes in models of infectious disease dynamics. We do35

not aim to provide a new perspective or comprehensive review on these topics,

which can be found in numerous recent works [2, 3, 4, 5]. Instead, our goal

is to summarise some open questions and challenges in the field that are an

important focus of immediate research, and that we hope will serve as an entry

point for those interested in getting involved.40

Challenge 1: Set the baseline and determine the effect of departing

from it

A key challenge underlying many of the points addressed in this paper is to

set an appropriate baseline of behaviour. Two important “baseline” behaviours

stand out, one related to mixing, that is how people go about activities of daily45

life that involve some risk of infection (e.g., going to school, or having sex) and

the other related to disease prevention and control. The contact baseline, or the

“normal mixing” behaviour, can disrupted by an epidemic through a number of

mechanisms. For example, individuals can choose to change their behaviour in

an attempt to reduce their risk [6], or their behaviour can be influenced by the50

nature of being ill [7, 8], both of which affect contact patterns. The other rele-

vant “baseline” refers to people’s inherent willingness to partake in preventative

behaviours; most people, for example, follow official recommendations and have

their children vaccinated.

A “baseline” or equilibrium might be attained through game theoretic anal-55

ysis [9, 10] under the assumption that people make rational decisions by weigh-

ing up the private benefits and costs of different options, yielding a certain

fraction of the population seeking vaccination, or adopting safe sex. In the

absence of data on such “baseline” behaviour, the theoretical equilibrium can

provide a useful starting point. This can then be disrupted by some event, such60

as the Measles-mumps-rubella (MMR) scandal in the United Kingdom. How

exactly and under which circumstances such disruptions manifest themselves

is an open research question, and one that can only be answered by relating
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game-theoretical or other modelling approaches more closely with independent

observations of behaviour.65

Challenge 2: Assess how and to what extent behaviour should be

modelled explicitly

During model development, an investigator must decide whether to treat a

given quantity as a dynamic one which evolves in response to other quantities

(a model “variable”), or as a fixed value that is exogenously imposed by the70

modeller (a model “parameter”). Traditional epidemic models account for be-

haviour implicitly through parameters such as the basic reproduction number.

In contrast, modelling the dynamics of behaviour towards infectious diseases

requires endogenising behaviour by making it a model variable. However, this

leaves questions about which aspects of behaviour should be endogenised, and75

which should remain as model parameters. This is more than just a techni-

cal decision, because it has implications for how we understand and interpret

behavioural dynamics. A relevant question is: To what extent is vaccination

behaviour determined by response to disease dynamics, and to what extent is it

determined by vaccine availability and social norms? In other words, to what ex-80

tent are vaccine scares historical accidents (exogenous treatment), and to what

extent are they enabled by the inherent instability of high vaccine coverage

caused by vaccine-generated herd immunity (endogenous treatment)?

Intuitively, if behaviour depends on quantities that change rapidly, such as

disease dynamics in a fast-expanding outbreak, then behaviour should probably85

be represented endogenously. If behaviour depends on quantities that change

more slowly, such as social norms or vaccine supply, then it might be possible

to represent behaviour through a model parameter. Which of the two scenarios

applies, however, also depends on the timescales considered, as social norms

and vaccine supply do evolve, yet over long periods. The question of whichever90

approach is most appropriate in a given scenario can be addressed more rigor-

ously by formulating a collection of variant models where different aspects of
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behaviour are treated as variables or parameters, and then using model selection

methods to determine which variant model best explains the data.

Challenge 3: Determine the minimal level of detail required to model95

differences in behaviour

How much psychological detail is required for models to be able to capture

the dynamics of population-level behaviour? There are many different models of

health-related behaviour in psychology, but for epidemiological purposes a crude

understanding of the major drivers and their relative strength is probably suffi-100

cient. In the same way that thermodynamic laws are not formulated to depend

on the details of molecular-level dynamics, can we model population-level be-

haviour in a simple, aggregate way without explicit reference to individual-level

dynamics?

The key challenge then becomes heterogeneity. How well does the simple105

model work for everybody? Are there identifiable groups whose response is

predictably different, and how important are they epidemiologically? Is there

a “landscape” of predispositions to certain behaviours (i.e., will some of us be

more inclined to follow official guidelines than others)? If yes, do people fall into

discrete groups or is that landscape continuous? For example, are risk-averse110

versus risk-seeking tendencies bimodal, or distributed across a more continuous

distribution? How do individuals perceive risks of both infection and adverse

effects from control measures and how does the perception of risk change with

disease prevalence in the population?

Many of these questions have been studied in econometrics [9], but it re-115

mains an open challenge to translate these insights into mechanistic models of

infectious disease dynamics. Exploring these questions in mechanistic models

and testing different scenarios could yield the limits as well as strengths of “sim-

pler” models, as well as suggest appropriate studies (e.g., through population

surveys) that would directly inform model parameters.120
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Challenge 4: Quantify changes in reporting behaviour

Data used to track an epidemic typically rely on reporting by individual

doctors or hospitals, and therefore depend on how many people seek medical

care, how likely doctors are to identify a case correctly, and how likely they

are to report it. How does people’s health-seeking behaviour change during the125

course of an outbreak? The propensity to visit a doctor is likely to depend

on levels of concern and on public health messages, both of which are subject

to change as an outbreak progresses. Evidence from the 2009 flu pandemic in

the UK suggested that individuals’ likelihood of consulting a doctor decreased

radically over the course of the epidemic [11], and the increasing availability of130

online surveillance of influenza-like illness elsewhere opens promising avenues

for similar studies. Likewise, doctors’ diagnosis and reporting behaviour may

change, depending on familiarity with a condition and perceptions about which

infections are currently common. Changes may take place gradually as attitudes

evolve, or suddenly in response to significant changes in the reporting system,135

for example the UK’s introduction of a telephone and internet service midway

through the 2009 pandemic [12].

Some models have attempted to draw together evidence from various sources

to account for changing reporting behaviours [13], but in general more informa-

tion is needed. Laboratory testing of cases defined on the basis of symptoms140

alone provides a useful validation of doctors’ diagnoses, but fails to capture those

individuals who do not seek treatment. Work is required to better integrate med-

ically attended case series with community surveillance, particularly surveillance

that explicitly monitors trends in health-care seeking behaviour [14, 11], to “cut

out the middle man” (the doctor) and better understand the true epidemic145

picture, and the behavioural drivers that may distort our measurements.
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Challenge 5: Predict the response to interventions and health cam-

paigns

With better availability of drugs and vaccines, successful control of infec-

tious diseases is increasingly dependent on compliance of individuals with im-150

plemented measures. Improving the design and evaluation of control strategies

therefore first requires deeper understanding of human behaviour, its variability

and the drivers of its change. Can we predict the response to a health campaign?

Such responses can vary greatly both within and between populations, and

depend on cultural circumstances, details of the infection, and the health cam-155

paign in question, as the examples of polio in Pakistan or measles in the UK

(with differences in behaviour before and after the discredited Wakefield study

alleging a link between the MMR vaccine and autism) demonstrate. Moreover,

the successes of a health campaign may vary due to the passive (requiring mem-

bers of population to seek health measures) or active (bringing health measures160

to the individuals of a population) nature of the campaign. How much do the

details of implementation matter? Can a single spokesperson make a difference?

Can a campaign end up doing more harm than good? When we model interven-

tions, how do we account for change in behaviour in response to interventions?

Analysis of uptake statistics linked to knowledge of campaigns would be a165

starting point to answer these questions, but how these are best translated into

models for infectious disease dynamics remains an open question.

Challenge 6: Identify the role of movement and travel

Infectious diseases and their dynamics are tightly linked with movement and

travel. On one hand, population movement can drive local disease transmission170

and its seasonality, as in sub-Saharan Africa where increases in urban density

during the dry season cause episodic measles outbreaks [15]. On the other hand,

disease can be a strong driver of movement by causing people to flee disease-hit

areas, especially dense urban centres (e.g., plague and cholera in London). This

can have negative consequences for destination locations, especially if migrants175
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are unknowingly infected [16]. Alternatively, people may choose to minimise

their trips in response to outbreaks and engage in self-protecting behaviour by

cancelling their flights, indicating that they value the reduction in perceived risk

of infection more than the money spent on airfare [17]. The ability of people to

flee will depend on various factors including socioeconomic conditions, family180

structure, and non-local contacts, highlighting the importance of understanding

the heterogeneity in causes and effects of disease-driven movement.

As a result of lower density of the remaining population, individuals’ con-

tact networks may shrink, reducing local transmission. In contrast, medical

and emergency response personnel are likely to experience an increase in their185

numbers of contacts. But how exactly do contact networks change in response

to infection and to what extent are these dynamics dependent on where an

infection is? Given that most contact patterns are measured in the absence of

disease [18], how useful are these studies for predicting disease spread and assess-

ing control measures? Combining our understanding of basic human mobility190

and migration patterns [19, 20] with the behaviour “baseline” (see Challenge 1)

offers a good starting point to model the effects of changes in movement and

travel on diseases.

Challenge 7: Develop models that can be verified against data from

digital sources195

Data on individual and population behaviour concerning infectious diseases

have historically been scarce. However, the recent advent of new digital sources

may change that [21]. These sources include online social media, mobile phone

data, Bluetooth data, electronic texts, search engine data, sales data and other

sources of data now routinely collected by companies and institutions. For exam-200

ple, researchers have used data from Twitter to study awareness and sentiments

regarding influenza outbreaks and vaccines [22, 23]. Other promising digital

sources include usage data for websites like Wikipedia [24], and search engine

data, such as available through Google Flu Trends [25], although challenges
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clearly remain [26]. Any scientific model must ultimately be testable against205

data, hence we must develop models that can be tested against the kind of data

that are available. Relevant challenges include: How can we be more creative

about using “new” data sources to develop models? Can we use digital media

to set up our own experiments to answer some of the challenges posed here and

thus inform model development? Which statistical models can be used, and210

which new ones need to be developed, to synthesise information derived from

digital media with information derived from more traditional sources, such as

cross-sectional population surveys, inside or outside of a modelling framework?

In this way, the weaknesses of one type of data may be compensated by the

strengths of the other. Existing data on behaviour were often not collected with215

the purpose of model parameterisation in mind, so it can be difficult to find

appropriate data for parameterising behavioural models; therefore modellers

will often have to collect the data themselves. Because digital data sources

are often resolved at the individual level, individual-based models and network

simulations lend themselves naturally to such applications.220

Challenge 8: Inform real-time data collection

Data on behavioural change in response to an epidemic (or similar) shock

are key for the parameterisation of infectious disease dynamics models. In an

ideal situation, collecting these data during a real epidemic would provide the

rare opportunity to measure behaviours in response to local and global informa-225

tion about disease spread, as well as simultaneous measurement of the possible

drivers of behaviour change. However, collecting these data, even if key drivers

are known, is very difficult and, consequently, rarely done [14, 8].

An alternative approach may be the collection of data on hypothetical sce-

narios. The advantage of a hypothetical scenario is that researchers can gain230

information on many different sorts of events, and studies can be repeated among

many different population samples. However, hypothetical studies can be ex-

pensive and the value of these studies remains controversial. In this situation,
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epidemiological models, in addition to being consumers of data on behavioural

response and change, can also be used to inform real-time collection of data235

on behaviour. What sample sizes should be used to robustly detect changes in

behaviour? Which observation window must be used to robustly parameterise

models? Are there “sentinel” individuals that can be observed to minimise re-

sources and maximise prediction accuracy? While making use of models when

planning studies may not solve practical limitations of cohort recruitment, it will240

make the rare opportunities of real-time behavioural data collection a more effi-

cient process so models can more accurately reflect behaviour and make better

predictions.

Challenge 9: Engage in dialogue across disciplines

Many of the issues discussed in this work touch on research that is being done245

in a number of different disciplines, from psychology to sociology, economics,

epidemiology and mathematics. Different approaches are traditionally used in

different fields, and rarely do results attained in one area get used in another.

A recent book has gone to laudable lengths to include chapters from economists

as well as mathematical biologists [5], but, clearly, much work remains to be250

done in an area where clearly there is great scope for cross-fertilisation of ideas

and methods.

Conclusions

Behavioural heterogeneities and changes play an important role in many ar-

eas of infectious disease dynamics, from vaccine-preventable infections [27] and255

eradication efforts [28], to network modelling and measurement [29, 30]. Design-

ing and validating models of behaviour towards infectious diseases and changes

therein is challenging. Nonetheless, while it may be impossible to capture the

behaviour of a given individual, it may be more feasible to predict behavioural

averages and distributions. Consequently, population-scale behaviour may be260

amenable to modelling [3], and even where it is not, it remains important to
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identify the limits of predictability and propagate uncertainty onto model un-

certainty.

With these challenges addressed, models of infectious diseases that include

human behaviour can make the important transition from theoretical models of265

what-if scenarios to becoming relevant for policy decisions [31, 27].
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