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When a disease breaks out in a human population, changes in
behavior in response to the outbreak can alter the progression
of the infectious agent. In particular, people aware of a disease
in their proximity can take measures to reduce their susceptibility.
Even if no centralized information is provided about the presence
of a disease, such awareness can arise through first-hand observa-
tion and word of mouth. To understand the effects this can have on
the spread of a disease, we formulate and analyze a mathematical
model for the spread of awareness in a host population, and then
link this to an epidemiological model by having more informed
hosts reduce their susceptibility. We find that, in a well-mixed pop-
ulation, this can result in a lower size of the outbreak, but does not
affect the epidemic threshold. If, however, the behavioral response
is treated as a local effect arising in the proximity of an outbreak,
it can completely stop a disease from spreading, although only if
the infection rate is below a threshold. We show that the impact
of locally spreading awareness is amplified if the social network of
potential infection events and the network over which individu-
als communicate overlap, especially so if the networks have a high
level of clustering. These findings suggest that care needs to be
taken both in the interpretation of disease parameters, as well as
in the prediction of the fate of future outbreaks.

mathematical model | rumor spread | behavioral response | social networks

H uman reactions to the presence of disease abound, yet they
have rarely been systematically investigated (1). Such reac-

tions can range from avoiding social contact with infected individ-
uals (social distancing) to wearing protective masks, vaccination,
or more creative precautions. It has been shown, for instance,
that local measles outbreaks are correlated with the demand for
measles, mumps, and rubella vaccines (2). Similarly, the demand
for condoms rises in areas where AIDS is prevalent (3), and con-
dom use has been linked to the knowledge of someone who has
died of AIDS (4).

Behavior that is responsive to the presence of a disease can
potentially reduce the size of an epidemic outbreak. On closer
inspection, it is not so much the presence of the disease itself that
will prompt humans to change their behavior, as awareness of the
presence of the disease. A change in behavior can be prompted
without witnessing the disease first hand, but by being informed
about it through others. This information in itself will spread
through the population and have its own dynamic. For example,
according to the Chinese Southern Weekend newspaper, the text
message “There is a fatal flu in Guangzhou” was sent 126 million
times in Guangzhou alone during the 2003 severe acute respira-
tory syndrome (SARS) outbreak (5), causing people to stay home
or wear face masks when going outside. This figure stands in stark
contrast to the comparatively low number of 5,327 cases recorded
in the whole of China (6). It is not clear how much the individual
behavioral responses contributed to containing the disease.

The spread of rumors has been described as “infection of the
mind” (7) or “thought contagion” (8), and their spread is analo-
gous to the spread of an infectious disease: information is passed
on from carrier to carrier through a network of contacts. There-
fore, when humans respond to the presence of a disease, we have
a situation where an infectious agent and the information about

the presence of this agent spread simultaneously, and will interact
in their spread by a change in human behavior.

Here, we present a network model for the spread of awareness
about a contagious disease. Awareness arises at the location of the
disease and spreads among the population similarly to the way a
disease would, an analogy that was suggested as early as 1964 (9).
To capture the ephemeral nature of information, we implement an
idea presented in ref. 10: as the information is passed from person
to person, it loses its quality; in other words, first-hand informa-
tion about a disease case will lead to a much more determined
reaction than information that has passed through many people
before arriving at a given individual.

Efforts to assess the potential for prevention of future out-
breaks of contagious diseases have motivated previous studies on
the effects of social distancing (11, 12) which, however, focused
on behavioral changes imposed by a central organization on the
population level. Attempts at extending this to incorporate indi-
vidual behavioral reactions have focused on vaccination decisions
and consequences thereof (13–16), dynamic rewiring of transmis-
sive contacts (17), or incidence-dependent reductions in contact
rate (18).

In this study, we will investigate how the spread of awareness,
prompted by first-hand contact with the disease, affects the spread
of a disease. In this context, we understand awareness as the pos-
session of information about the outbreak one is willing to act on
as opposed to just generally knowing about the disease through
media coverage or government programs without taking action. To
study this, we have overlaid our model of information spread with
a model for the spread of a contagious disease on two, not nec-
essarily identical networks, with more informed individuals acting
to reduce their susceptibility.

In the following, we will introduce the model and, in a first
approximation, cast it into a system of ordinary differential equa-
tions under the assumption of random mixing of individuals within
the population. This will allow us to show how awareness can
reduce the number of individuals infected during an epidemic,
while the threshold for disease invasion, and thus the potential
for outbreaks, remains unchanged. Subsequently, we will con-
sider a full spatial version of the same model. We will see that
if the assumption of random mixing is lifted and the local nature
of the interaction taken into account, locally spreading awareness
can prevent a disease from breaking out, and how social network
structure and overlap between the networks have an effect on this
interaction.

The Model
We associate with each individual X in the population of size N
a level of awareness indicated by an index i which denotes the
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Table 1. Transitions of the model

Transition Rate

Infection Si + Ij → Ii + Ij (1 − ρi)β̂
Recovery Ii → Ri γ

Information transmission Xi + Xj>(i+1) → Xi + Xi+1 α̂

Information fading Xi → Xi+1 λ

Information generation Ii → I0 ω

number of passages the information has undergone before arriv-
ing at the given individual, i.e., X0 will stand for an individual
with first-hand information and Xi for one with information that
has passed through i other individuals before arriving at the given
individual. The two transitions governing the information dynam-
ics are information transmission (Xi + Xj>(i+1) → Xi + Xi+1) and
fading of awareness (Xi → Xi+1). As the quality of information
decreases at each transmission event while it is also gradually lost
within each individual, information eventually disappears from the
population if it is not refreshed.

We link this model to an epidemiological susceptible-infected-
recovered (SIR) model (19), assigning each individual a disease-
related state of susceptible (denoted Si, the subscript i again rep-
resenting the level of information), infected (Ii) or recovered (Ri)
with the usual transitions of infection and recovery.

To capture the impact of individual actions, we make trans-
mission of the disease dependent on the quality of the infor-
mation available to a given susceptibility. The susceptibility of
individuals in states Si increases with i as (1 − ρi), 0 < ρ < 1.
The decay constant ρ therefore governs how much the tendency
to act is reduced with decreasing quality of information. The
total amount of awareness in the susceptible part of the pop-
ulation g(ρ, {Si(t)}) at any given time t can then be calculated
as g(ρ, {Si(t)}) = ∑

(Si(t)/S(t))ρi, i = 0, 1, 2, . . ., the probability
generating function of awareness within susceptibles.

We assume that information can be generated de novo if the
disease is present, so we link generation of new information to
a transition through which awareness about the disease is gen-
erated in infected individuals at rate ω. As the parameter ω thus
reflects the likelihood per unit time of an infected individual to find
out about their infection, it distinguishes between diseases with
obvious and readily interpreted symptoms and cases where, for
instance, the infection is contagious but asymptomatic, or where
infection does not necessarily entail awareness about its nature
(e.g., SARS, which may be mistaken for common flu). All the tran-
sitions and their respective rates are summarized in Table 1. There,
and in the following, we denote with a hat per contact as opposed
to population-level rates such that α̂ is the rate of information
transmission per contact, whereas α is the total rate of informa-
tion in the population, and analogously for β and β̂. This is relevant
only for the contact processes governed by these two parameters,
because the processes not depending on contact happen with the
same rate at the individual level as at the population level.

Mean-Field Analysis
In the mean-field approximation, individual variables are replaced
by population aggregates. By assuming random mixing and there-
fore ignoring any spatial structure within the population, we can
describe the model system fully considering only the number of
individuals in each possible state.

In the mean-field version of our model of information spread,
the population is compartmentalized according to level of aware-
ness, and the information dynamics for the part of the population
at awareness level i is governed by

dNi

dt
= −α

Ni

N
N<i + α

Ni−1

N
(N − N<i) − λ(Ni − Ni−1),

Fig. 1. Awareness g(ρ, t) in the well-mixed population as a function of time
for a given ρ < 1 if information is not replenished by the presence of the
disease.

where N<i = ∑i−1
0 Nj is the number of individuals having better

than ith hand information.
At any moment, awareness is then somehow distributed in the

population, and this distribution changes over time according to
the model dynamics. If new, and thus high-quality information is
introduced once in a population in which no or only low-quality
information is available, this will initially spread to increase the
total amount of information in the population, given by

∑∞
i=0 ρiNi,

only if α/λ > (1 − ρ)/ρ, which ensures that sufficiently many
get informed to counteract the contemporaneous loss of quality
(see supporting information (SI) Appendix). As the quality of the
information diminishes while it is passed through the population,
and at the same time the population gradually forgets, the only
equilibrium here is one in which information is completely absent,
i.e., information always disappears eventually after an initial rise
(Fig. 1). Only if first-hand information is continually refreshed
by the presence of a disease, the distribution of the information
reaches a nonzero equilibrium.

By linking the model of information spread with the SIR model
of the spreading disease, we obtain the full set of differential
equations describing the interaction between the two processes
(see SI Appendix). Now, a mutual feedback between information
and disease emerges: higher prevalence of the disease entails
more highly informed individuals, which in turn disseminate more
information into the susceptible population, thereby impeding the
further spread of the disease.

We can obtain a clearer picture of this interaction by sum-
ming the equations over the information states. In that case,
the mean-field equations reduce to a form similar to the SIR
equations,

dS
dt

= −β′ S
N

I,

dI
dt

= β′ S
N

I − γI,

dR
dt

= γI,

where β′(ρ, {Si(t)}) = β · [1 − g(ρ, {Si(t)})] reflects the current
level of awareness within the susceptible population and can be
interpreted as the effective rate of infection as part of the popula-
tion is shielded by its awareness and the corresponding behavioral
response. Since β′(ρ, {Si(t)}) depends on the distribution of the
Si(t), this system is not closed, but it is still useful for understand-
ing the behavior at the start of an outbreak. If at any time all
susceptibles were maximally aware (S = S0), β′ would be 0 and
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the disease would not spread at all, a situation that will never arise
in the model because susceptibles can at best obtain S1 status if
they are informed by infecteds with first-hand information (I0). If,
however, at any instant nobody is aware (S → S∞), β′ becomes
equal to β, and the model reduces to the conventional SIR model
(see, e.g., refs. 19 and 20) with infection rate β and recovery rate
γ. In the conventional SIR model, the epidemic threshold is at
R0 = β/γ = 1, meaning that an initially low number of infecteds
will increase if β > γ to cause an epidemic, whereas the disease
will die out if β < γ.

Intriguingly, in this version of our model, the epidemic thresh-
old does not change compared with the conventional SIR model
if we start with a fully uninformed and susceptible population.
In that case, awareness arises only through the process of infor-
mation generation, coupled to the parameter ω and the number
of infected I. This becomes relevant only once sufficiently many
carry the disease, and only then is β′ reduced with respect to β.
During the initial stages of the outbreak, however, β′ ≈ β, and the
number of infected will always increase initially if β > γ. Only if
a certain level of awareness were already present at the time t0 of
the beginning of the outbreak, the threshold would be reduced to
R0 = β′(ρ, {Si(t0)})/γ.

Even with an unchanged epidemic threshold, the outbreak
ceases to grow once S(t) = Nγ/β′(ρ, {Si(t)}), which can be at a
significantly lower level than the usual peak at S = Nγ/β, and,
similarly, the final size of the epidemic can be much lower than
without the effect of spreading awareness (see SI Appendix).

Individual-Based Analysis
The analysis presented in the previous section regarded the system
at the population level under the assumption of random mixing,
such that both the pathogen and the different levels of aware-
ness were each distributed homogeneously within the popula-
tion. In individual-based network models, however, each member
of the population is embedded into a network of contacts and
can infect others only over the connections of that network. In
real social networks, mixing is far from random, and the num-
ber of connections each individual forms is limited and can vary
significantly (21).

In a conventional SIR model, the infection events originating
from a given infected individual are realized independently with
identical probability T , and the average number of secondary indi-
viduals infected by a randomly chosen individual that has been
infected is given by (20, 22–24)

R̂0 = TDk = T
(

k − 1 + Var(k)

k

)
,

where k is the average degree, or number of contacts, and Var(k)
is the variance thereof, such that Dk represents the effective num-
ber of contacts each individual has within the network. The basic
reproductive number R̂0 defines a threshold similar to the way R0
does in the mean-field case, in the sense that a large outbreak is
possible only if every individual infects more than one other indi-
vidual on average, that is if R̂0 > 1. In a conventional SIRS model,
T = β̂/(β̂ + γ) (25), and the mean-field approximation is realized
by taking the limit of k → ∞ while keeping kβ̂ = β constant,
yielding R̂0 → R0 = β/γ.

Here, we will first consider the case where disease spreads
locally, but information is disseminated globally, as in the case
where awareness is triggered by information broadcast through
the media. If the spread of information is well-described by the
mean-field approximation presented above, we can assume that
information quality is independent and identically distributed
within susceptible contacts of infected individuals. In that case,

the probability of infection at time t over a given link chosen at
random is

T ′(t) =
∞∑

i=1

pi(t)Ti with Ti = β̂(1 − ρi)

β̂(1 − ρi) + γ
,

where pi(t) is the probability of the susceptible at risk of infection
to possess information having gone through i hands at time t, and
Ti is the probability of infection of that neighbor. If the distribu-
tion of awareness is already present at the time t0 of the beginning
of an outbreak the basic reproductive number is reduced to

R̂′
0 = T ′(t0)Dk = R̂0 − (T − T ′(t0))Dk.

In the limit of random mixing of disease contacts, this reduces to
R̂′

0 → R′
0 = β′(ρ, t0)/γ as found in our mean-field analysis.

A completely different picture emerges if awareness, just like
the disease, is not just globally present but spreads locally from
individual to individual during the initial stages of the outbreak.
Before we look at the full picture, let us assume for the moment
that information transmission is only occurring between infected
individuals informing their susceptible contacts, but that the infor-
mation is not passed on any further, which could be regarded as
analogous to single-step contact tracing. In that case, the impact of
awareness depends on the number of edges emanating from each
node that are common to both networks. If we let (kc) denote
the common degree, that is the number of contacts for possible
disease transmission that are also information contacts, and (kd)
the degree for contacts of disease transmission only, the reduced
basic reproductive number is given by

R̂′
0 = T ′D(kc) + T∞D(kd) T ′ = p0T0 + p1T1,

where T∞ = β̂/(β̂+γ) is the transmission probability to completely
uninformed individuals, as the contacts of information transmis-
sion leading to individuals not at risk of disease transmission do
not contribute to the reduction of R̂0. In this approximation, we
can derive a full expression for the reduced transmission probabil-
ity T ′ in terms of the information-related quantities ω, α̂, and ρ (see
SI Appendix). As a consequence of the reduction in T ′, the basic
reproductive number R̂′

0 is lower than R̂0 and can drop below the
threshold of R̂′

0 = 1 even if R̂0 > 1, in which case the disease is pre-
vented from growing into an epidemic, unlike it would do without
the effect of spreading awareness. Given the information-related
parameters, we can derive a critical value R̂crit

0 (α̂, ω, ρ) of the basic
reproductive number of the disease, in the sense that information
can in principle prevent it from taking hold in the population if
R̂0 < R̂crit

0 (see SI Appendix).
While the full expression for this critical R̂crit

0 is complex and
does not lend itself to a simple interpretation, we can gain insight
into the underlying principles by deriving upper bounds on that
critical level. The protection provided by being informed is con-
strained by the value of the decay constant ρ. Consequently, if R̂0
is greater than

lim
ω→∞
α̂→∞

R̂crit
0 = 1

1 − ρ(1 − D−1
k )

,

for a given disease, there is no chance for local information to
stop the disease from growing into an epidemic, however fast it is
generated and spreads within the population (Fig. 2).

Even if ρ is large, information needs to be both generated and
spread at a sufficiently high rate to have an effect on the disease
outbreak. Given either the rate of information generation ω, or
the rate of information spread α̂, we can determine two more
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Fig. 2. Per contact information transmission rate α̂ needed to push the out-
break below the epidemic threshold for a given basic reproductive number
of the disease R̂0. Shown is the theoretical prediction (line) and simulation
results for different values of s, the number of steps information is allowed to
travel from the source. The nodes were connected as a random regular graph,
i.e., randomly with uniform degree k = 6, and the data points closely follow
the predicted line. The critical R̂crit

0 for the parameters used here (ρ = 0.9) is
indicated by a vertical line.

upper bounds on the critical value of the basic reproductive num-
ber beyond which the disease cannot be stopped from reaching
epidemic proportions:

lim
ω→∞
ρ→1

R̂crit
0 = γ + α̂

γ + α̂D−1
k

and lim
α̂→∞
ρ→1

R̂crit
0 = γ + ω

γ + ωD−1
k

,

represent situations where any information transmission or infor-
mation generation, respectively, would fully protect the informed
individual from getting infected. If all the parameters of informa-
tion spread are given, these three limits all represent upper bounds
for the critical reproductive number R̂crit

0 , significantly limiting
the potential impact of local information spread on the epidemic
threshold. Only through a proper combination of all three involved
processes (information generation, transmission, and protection)
can the basic reproductive number be altered significantly.

The full effect of the interaction between the two spreading
processes comes into play when we let the information propagate
independently without limiting the number of steps it can spread.
In that case, there is a chance for an infected individual to have
its susceptible contacts informed through others, and T ′ can be
further reduced. However, there remains a limit to the effect as
the first upper bound on R̂crit

0 remains in place if ρ < 1 (Fig. 2).
Only if information is perfect and individuals completely remove
themselves from the epidemic system when they are informed can
any disease be stopped.

A way to push that limit toward higher values of R̂0 even without
the need for perfect protection would be for individuals to rewire
their contacts dynamically (see, e.g., ref. 17), i.e. to cut a trans-
missive contact to the person they have just been informed by and
establish a contact to another person instead. In that case, R̂′

0 can
indeed be shown to be reduced further, although it remains a mild
effect as it affects only contacts that are common to the disease
and information networks.

The reduction in the basic reproductive number and its lim-
its are clearly a consequence of the contact-based view, and
they did not appear in the mean-field analysis. In fact, the
mean-field limit of the full expression for R̂′

0 still yields R̂′
0 →

R0 = β/γ. With respect to the well-mixed scenario, the exis-
tence of edges that are common to both networks introduced

Fig. 3. Average awareness in the susceptible members of SI pairs in terms
of the average awareness in all susceptibles, measured in stochastic simula-
tions on the following scenarios of disease and information network struc-
ture: completely overlapping (filled squares) and completely disjointed (open
squares) regular random graphs, completely overlapping lattices (filled cir-
cles) and the disease network as a lattice with the information network as a
regular random graph (open circles). The line corresponds to the case pSI

i = pS
i .

an element of structure that has no equivalent in the mean-field
approximation.

Network Overlap
The single-step analysis presented in the previous section allowed
for the two networks to be different, in that contacts of infectious
individuals on the disease network that were not connected to
the same individual on the information network were assumed to
be completely unprotected. However, if awareness is allowed
to spread for more than just one step, such missing links can par-
tially be compensated for if there are other paths connecting an
infected individual and its susceptible neighbor, i.e., if information
links are clustered around the disease links.

Ultimately, the influence of spreading awareness on a disease
outbreak depends on how much the individuals at the front of the
growing epidemic are aware of its presence. Although the impact
of heterogeneities in the degree distribution [including so-called
scale-free network topologies (26)] can be captured in the factors
D(kc) and D(kd), other properties of the two networks and their
relation to each other can have a strong impact on the contain-
ment of the disease. Going back to a deterministic description of
the system, we can get some insight into the relevant processes
and their dependence on network structure and overlap by con-
sidering the dynamics of the population-level variables in terms
of pairs (27). Denoting the number of pairs of a given type on
the disease network with [. . .]d, the equation for the number of
infected individuals contains a term

İ = . . . + β̂

∞∑
i=0

(1 − ρi)[SiI]d . . . ,

which can be rewritten as

İ = . . . + β̂

∞∑
i=0

(
(1 − ρi)pSI

i

)[SI]d . . .

Here, pSI
i = [SiI]d/[SI]d represents the probability that the S

member in a randomly chosen SI pair on the disease network
to be at information level i, such that β̂′ = β̂

∑
(1 − ρi)pSI

i , can
be regarded as the analogue to the effective infection rate β′ of
the mean-field equations. If no correlation exists between the
locations of disease and information and they spread completely
independently, the pSI

i are given by
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Fig. 4. Snapshot of a simulated disease outbreak on a triangular lattice. Red
represents nodes that have been infected during the outbreak, with light red
indicates nodes that are still spreading the disease. Darker shades of gray cor-
respond to higher levels of awareness in susceptibles. Animated versions are
available as supporting video. (See SI Appendix, Movies S1 and S2).

pSI
i = pS

i = Si/S

which is nothing but the probability of a randomly chosen sus-
ceptible to be at information level i. If this equation holds, no
correlation exists between information level and risk of catch-
ing the disease, and the effect of awareness is again one of a
homogeneously distributed reduction in susceptibility.

Although it is not practical to derive an analytical expression
for the behavior of pSI

i in terms of network structure and overlap,
we can measure it on simulated networks. In Fig. 3, one sees that
if the information network is connected randomly and indepen-
dently of the disease network, we obtain the mean-field situation
where pSI

i = pS
i . If both networks are connected randomly but

coincide, information is distributed more effectively and we
observe a mild departure from equality of pSI

i and pS
i . A much

more pronounced effect, however, can be observed if the two
networks are triangular lattices, which contain many clusters, or
triangles of connections. In that case, information is distributed
much more effectively if the two networks coincide, resulting in
significant correlation between risk of infection and information
level, such that that much less total information is needed to pro-
tect the part of the population most at risk. Fig. 4 illustrates this
effect, showing a snapshot of a simulated disease outbreak with
awareness spreading on an triangular lattice completely overlap-
ping with the disease network. Clouds of information have already
formed around infected individuals, strongly limiting the further
spread of the disease.

Discussion
On a social network, spreading awareness of a contagious disease
in conjunction with a reduction in susceptibility does not only

lower the incidence of that disease, but in some cases can even
prevent that disease from growing into an epidemic. This is the
case even if the awareness is not triggered by central information,
but instead based on information that is passed on from person
to person. However, beyond a critical infection rate, spreading
awareness can slow down the spread of a disease and lower the
final incidence, but it cannot completely stop it from reaching epi-
demic proportions and taking over large parts of the population.
Only if the disease is easily recognized and information spreads
rapidly, while at the same time there is a strong tendency toward
protective behavior, awareness of a disease outbreak can bring the
infection rate of a disease down significantly. If all of these factors
work together, rapid drops in the transmissibility of a disease, as
have been observed, for example, in the 2003 outbreak of SARS
in Hong Kong (28), might be rooted in processes similar to the
ones here presented.

Social network structure is found to play a significant role in
the way spreading awareness and a contagious disease interact.
The relative clustering of the information network around infec-
tious individuals determines how effectively spreading awareness
can constrain an epidemic outbreak. This effectiveness is signifi-
cantly lowered when the network of disease spread differs from the
communication network. This could be of relevance in the case of
sexually transmitted disease, where a strong heterogeneity in the
relevant network has been observed (29) and highly sexually active
individuals are of crucial importance, yet do not necessarily find
themselves in the same parts of the communication network as
potential infectious contacts (e.g., sex workers might not commu-
nicate frequently with their customers). However, contact tracing
programs work exactly to bring the two networks to match and
can be seen as a special case of overlapping networks with just
one step of information transmission.

Because the presence of a disease can change human behavior,
care should be taken when trying to predict disease progression
from behavioral observations in populations where the disease is
not present (30, 31) or from observations on a different disease
(32). Our model suggests how the interaction of social network
structure with the properties of the disease induces a change in
behavior in individuals and our results show how this could feed
back to alter the disease dynamics.

Up to now, the effects of social distancing have predominantly
been studied from a viewpoint of centrally controlled action. We
argue that it is of equal importance to consider the self-initiated
reactions of individuals in the presence of a contagious disease.
The model we analyzed here differs from the previous studies of
the effect of social distancing in that we treat it as a local effect
within the population which depends on the awareness of the
social proximity of a disease. The importance of this is particu-
larly relevant but not limited to cases like SARS in China where
initially no information was made available by the governing bod-
ies. Therefore, we think this can provide a valuable contribution
to the ongoing discussion about the impact to be expected from
social distancing in disease outbreaks to come.
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Supplementary material
The spread of awareness and its impact on epidemic outbreaks

Sebastian Funk, Erez Gilad, Chris Watkins, Vincent A.A. Jansen

In the following, we will present and analyze the system of ordinary differential equations describ-
ing the mean-field dynamics, and carry out the calculations leading to the basic reproductive number
in the individual-based model.

Mean-field analysis

Subscript i denotes information at the i-th generation, i.e. diminished i times by a factor ρ. Subscript 0

denotes the 0-th generation, information which has not been transmitted or lost quality yet. Disregard-
ing the generation of information for the moment by setting ω = 0, the full set of mean-field equations
is

dSi

dt
= −(1− ρi)β

Si

N
I − α

Si

N

i−2∑
j=0

Nj

 + α
Ni−1

N

 ∞∑
j=i+1

Sj

−λSi + λSi−1, (1)

dIi

dt
= +(1− ρi)β

Si

N
I − γIi − α

Ii

N

i−2∑
j=0

Nj

 + α
Ni−1

N

 ∞∑
j=i+1

Ij

− λIi + λIi−1, (2)

dRi

dt
= +γIi − α

Ri

N

i−2∑
j=0

Nj

+ α
Ni−1

N

 ∞∑
j=i+1

Rj

−λRi + λRi−1, (3)

where I =
∑

i Ii and Ni = Si + Ii + Ri, and S−1 = I−1 = R−1 = N−1 = 0. The dynamical equation for
I is

dI

dt
=
∑ dIi

dt
= +

( ∞∑
i=0

(1− ρi)β
Si

N

)
I − γI (4)

and the initial rate of increase of infected starting with a small number of infected in an otherwise
completely susceptible and uninformed population is exp(β−γ)t, such that initially number of infected
will always increase if β/γ > 1.

Disease dynamics

Rephrasing the system in terms of the dynamical variables S =
∑

i Si, I =
∑

i Ii and R =
∑

i Ri reduces
the system to SIR dynamics:

dS

dt
= −β′(ρ, t)

S

N
I, (5)

dI

dt
= β′(ρ, t)

S

N
I − γI, (6)

dR

dt
= γI, (7)

in which β′(ρ, t) = β(1− g(ρ, t)), and g(ρ, t) is the probability generating function of the distribution of
information among susceptibles at time t, g(ρ, t) =

∑
(Si(t)/S(t))ρi, i = 0, 1, 2, . . ..

1



Information dynamics

Rephrasing the system in terms of the Ni yields the information dynamics (if ω = 0):

dNi

dt
= −α

Ni

N

i−1∑
j=0

Nj

+ α
Ni−1

N

N −
i−1∑
j=0

Nj

− λNi + λNi−1

= −α
Ni

N
N<i + α

Ni−1

N
(N −N<i)− λ(Ni −Ni−1), (8)

where N<i =
∑i−1

0 Nj is the sum over all more informed parts of the population.
In equilibrium, we have

Ni =
1 + α

λ
N−N<i

N

1 + α
λ

N<i

N

Ni−1. (9)

for all i > 0. Therefore, the condition for the maximum of the distribution of information is

N<i =
1
2
N, (10)

such that, in equilibrium, the maximum of the distribution is always its median.
The total amount of information in the population, Q =

∑∞
i=0 ρiNi changes in time as

dQ

dt
= − α

N

∞∑
i=0

i−1∑
j=0

ρiNiNj +
α

N

∞∑
i=0

ρiNi−1N −
α

N

∞∑
i=0

i−1∑
j=0

ρiNi−1Nj − λ
∞∑

i=0

ρi(Ni −Ni−1)

= −(1 + ρ)
α

N

∞∑
i=1

ρiNiN<i + αρQ− λ(1− ρ)Q, (11)

and the initial rate of increase of awareness starting with a small number of informed in an otherwise
completely uninformed population is αρ− λ(1− ρ)). Hence, awareness in the population will increase
if

ρ

(1− ρ)
α

λ
> 1. (12)

Information generation

The inclusion of information generation into the model adds the following terms:

dI0

dt
= . . . + ω(I − I0)

dIi>0

dt
= . . .− ωIi, (13)

which do not change the disease equations.
With information generation, the dynamical equation for the most informed part of the population N0

is

dN0

dt
= −λN0 + ω(I − I0). (14)

Note that, however, S0 = 0 at all times as susceptibles will always have their her information passed on
to them by someone.

Final sizes

Examples of the possible reduction in the final size of the outbreak are given in Supporting Figures 1-3,
which show the fraction of the population having been infected by the end of an outbreak as calculated
from the ODE system in terms of the information transmission rate α for different values of the decay
constant ρ and the rate of information generation ω.
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Individual-based analysis

In our individual-based model, every individual has a number of contacts with other individuals, dis-
tributed with mean k and variance Var(k). Each of these contacts have independent probability of
disease transmission, in case one of the two individuals at its ends is infected and the other susceptible.
Given the average transmission probability T and the distribution of the number of contacts each indi-
vidual possesses, the average number of secondary infections caused by an infected individual is called
the basic reproductive number R̂0. In a conventional SIR model on a network, it is given by [1; 2; 3; 4]

R̂0 = TDk =
β̂

β̂ + γ
Dk (15)

where T = β̂/(β̂ + γ) is the per-contact probability of infection [5] (or the probability that infection
happens before recovery) and

Dk =
(

k − 1 +
Var(k)

k

)
(16)

takes into account the variation in the number of contacts each individual has.
In our model, variation in the state of awareness of susceptibles changes the transmission probabil-

ities. If the susceptible contact at the end of a connection for potential disease transmission is in aware-
ness state i, the transmission probability for a given contact between a susceptible and an infected is
given by

Ti =
β̂(1− ρi)

β̂(1− ρi) + γ
, (17)

and the modified basic reproductive number by

R̂′0 =

( ∞∑
i=1

piTi

)
Dk (18)

where pi is the probability of the susceptible to possess information having gone through i hands at the
time of potential infection, and Ti is the probability of infection over that contact given that i.

If we restrict ourselves to one-step of information transmission, only the transmission probabilities
p0 and p1 are non-zero. In fact, p0 is the probability that infection or recovery happens before infor-
mation is generated plus the probability that, if information is generated before infection or recovery
happens, one of the two still occurs before information is transmitted. Therefore, we have

p0 =
β̂ + γ

β̂ + γ + ω
+

ω

β̂ + γ + ω

β̂ + γ

β̂ + γ + α̂
(19)

p1 =
ω

β̂ + γ + ω

α̂

β̂ + γ + α̂
. (20)

To assess the maximum impact the information process can have on the spreading disease, let us as-
sume the networks for the spread of awareness and the disease to be the same. The modified basic
reproductive number, R̂′0 = (p0T0 + p1T1)Dk is then given by

R̂′0 =

((
β̂ + γ

β̂ + γ + ω
+

ω

β̂ + γ + ω

β̂ + γ

β̂ + γ + α̂

)
β̂

β̂ + γ
+

ω

β̂ + γ + ω

α̂

β̂ + γ + α̂

β̂(1− ρ)

β̂(1− ρ) + γ

)
Dk

=

(
β̂

β̂ + γ + ω
+

ω

β̂ + γ + ω

β̂

β̂ + γ + α̂
+

ω

β̂ + γ + ω

α̂

β̂ + γ + α̂

β̂(1− ρ)

β̂(1− ρ) + γ

)
Dk

=

(
β̂

β̂ + γ + ω

(
1 +

ω

β̂ + γ + α̂

(
1 +

(1− ρ)α̂

(1− ρ)β̂ + γ

)))
Dk

=

(
β̂ + γ

β̂ + γ + ω

(
1 +

ω

β̂ + γ + α̂

(
1 +

(1− ρ)α̂

(1− ρ)β̂ + γ

)))
R̂0 (21)
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The mean-field limit is taken by setting k → ∞, α̂ → 0, β̂ → 0, kα̂ → α, and kβ̂ → β. In that case,
we get R̂′0 → R0 = β/γ.

Solving R̂′0 = 1 for R̂0 yields

R̂crit
0 =

(β̂ + γ + ω)(β̂ + γ + α̂)((1− ρ)β̂ + γ)

(β̂ + γ)
[
(β̂ + γ + ω + α̂)((1− ρ)β̂ + γ) + ωα̂(1− ρ)

]
= 1 +

ωα(1− ρ)γ

(β̂ + γ)
[
(β̂ + γ + ω + α̂)((1− ρ)β̂ + γ) + ωα̂(1− ρ)

] (22)

The following limits can be applied to Eq. 21 before solving for R̂0:

lim
β̂→∞

R̂crit
0 = 1, (23)

and, using β̂ = γR̂crit
0 /(Dk − R̂crit

0 ) (Eq. 15)

lim
ω→∞
α̂→∞

R̂crit
0 =

1
1− ρ

(
1−D−1

k

) , (24)

lim
ω→∞
ρ→1

R̂crit
0 =

γ + α̂

γ + α̂D−1
k

, (25)

lim
α̂→∞
ρ→1

R̂crit
0 =

γ + ω

γ + ωD−1
k

. (26)
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Supporting Videos

Video 1

Simulated outbreak of just a disease spreading without associated awareness on a triangular lattice.
Red color indicates nodes which have been infected, with brighter red indicating those that are still
infectious.

Video 2

Simulated outbreak of a disease with associated awareness spreading on a triangular lattice. Red color
indicates nodes which have been infected, with brighter red indicating those that are still infectious.
Darker shades of gray indicate higher levels of awareness.
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Fig. S1. Fraction of the population having been infected by the end of an outbreak as
calculated from the ODE system in terms of the information transmission rate α. 
Different values of the decay constant ρ are indicated as crosses (ρ = 0.5), squares
(ρ = 0.8), circles (ρ = 0.9), and triangles (ρ = 0.95); the rate of information generation ω
is 0.01; the other parameters are β = 1, γ = 0.5, and λ = 0.5.
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Fig. S2. Fraction of the population having been infected by the end of an outbreak as
calculated from the ODE system in terms of the information transmission rate α. 
Different values of the decay constant ρ are indicated as crosses (ρ = 0.5), squares
(ρ = 0.8), circles (ρ = 0.9), and triangles (ρ = 0.95); the rate of information generation ω
is 0.1; the other parameters are β = 1, γ = 0.5, and λ = 0.5.
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Fig. S3. Fraction of the population having been infected by the end of an outbreak as
calculated from the ODE system in terms of the information transmission rate α. 
Different values of the decay constant ρ are indicated as crosses (ρ = 0.5), squares
(ρ = 0.8), circles (ρ = 0.9), and triangles (ρ = 0.95); the rate of information generation ω
is 0.2; the other parameters are β = 1, γ = 0.5, and λ = 0.5.



Movie S1. Simulated outbreak of only a disease spreading on a 
triangular lattice. Red color indicates nodes that have been infected, 
with brighter red indicating those that are still infectious. 
 
Movie S1 (MOV) 

http://www.pnas.org/content/vol0/issue2009/images/data/0810762106/DCSupplemental/SM1.mov


Movie S2. Simulated outbreak of a disease with associated awareness spreading on a 
triangular lattice. Red color indicates nodes that have been infected, with brighter red 
indicating those that are still infectious. Darker shades of gray indicate higher levels of 
awareness. 
 
Movie S2 (MOV) 

http://www.pnas.org/content/vol0/issue2009/images/data/0810762106/DCSupplemental/SM2.mov

