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Abstract 11 

Background: Households are important settings for the transmission of seasonal 12 

influenza. Previous studies found that the per-person risk of within-household 13 

transmission decreases with household size. However, more detailed heterogeneities 14 

driven by household composition and contact patterns have not been studied. 15 

Methods: We employed a mathematical model which accounts for infections both from 16 

outside and within the household. The model was applied to citywide primary school 17 
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surveillance data of seasonal influenza in 2014/15 season in Matsumoto city, Japan. We 18 

compared a range of models to estimate the structure of household transmission. 19 

Results: Familial relationship and household composition strongly influenced the 20 

transmission patterns of seasonal influenza in households. Children had substantially 21 

high risk of infection from outside the household (up to 20%) compared with adults (1-22 

3%). Intense transmission was observed within-generation (between 23 

children/parents/grandparents) and also between mother and child, with transmission 24 

risks typically ranging around 5-20% depending on the pair and household composition.  25 

Conclusions: We characterised heterogeneity in household transmission patterns of 26 

influenza. Children were identified as the largest source of secondary transmission, with 27 

family structure influencing infection risk. This suggests that vaccinating children 28 

would have stronger secondary effects on transmission than would be assumed without 29 

taking into account transmission patterns within the household. 30 

 31 

Abbreviations: CPI, community probability of infection; RDK, rapid diagnostic kit; 32 

SITP, susceptible-infectious transmission probability; MCMC, Markov-chain Monte 33 

Carlo; WBIC, widely-applicable Bayesian information criterion; CrI, credible interval. 34 

 35 
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Introduction 36 

Respiratory infectious diseases transmitted by droplets, exemplified by 37 

influenza, are known to spread over social contact networks (1,2). Social settings which 38 

involve frequent contacts play important roles in the transmission dynamics (3,4). 39 

Households are considered as one of the main layers of transmission, as individuals 40 

come in close contact with each other both conversationally and physically on a daily 41 

basis (5–7). Many epidemiological studies have used household data to investigate the 42 

transmission dynamics of influenza within households (8,9), particularly in terms of the 43 

secondary attack rate (the number of household secondary cases divided by the number 44 

of household members at risk). However, this assumes that an index case (the first case 45 

in a household, who is considered to be infected outside the household) is responsible 46 

for all subsequent household cases, and that all the other household members are 47 

equally at the risk of secondary infection.  48 

 The possibility of co-primary infections and tertiary transmissions are 49 

neglected under such assumptions (8); potentially heterogeneous transmission patterns 50 

between household members are also radically simplified. The former limitation can be 51 

addressed by mathematical models which separately estimate the risk of infection from 52 

outside the household (community probability of infection; CPI) and the within-53 
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household transmission risk (10). Many household studies have employed the Longini-54 

Koopman model and other related models to study within-household transmission 55 

dynamics of influenza (11–17). 56 

On the other hand, potentially-heterogeneous transmission patterns have not 57 

been fully studied with empirical data. Multiple household modelling studies 58 

incorporated factors including age, vaccination status and antibody titres (14,16,18–20) 59 

to account for heterogeneity, but these are merely individual risk factors that determine 60 

relative susceptibility of individuals. Considering typical behaviours within the family, 61 

it is natural to expect rich heterogeneity in household contact patterns related to familial 62 

relationships and household compositions, on top of those individual factors (6). 63 

However, to our best knowledge, household size is the only covariate which has been 64 

used to characterise contact behaviours in household models (13,14,17,18,21). Besides, 65 

due to the limited sample size of households in these studies, a rationale on the 66 

quantitative effect of household size in transmission has not been established. Familial 67 

roles/relationships have been paid far less attention to in household studies; we found 68 

only one field study on influenza that included familial roles as a covariate, a 69 

descriptive study that did not quantify the risk by familial roles (22). 70 
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Households serve as important units in intervention policies (23,24). Tailored 71 

quantification of the transmission risks from outside and inside the household will help 72 

prioritising and promoting household-level prevention strategies including vaccination. 73 

If specific compositions of households have a higher risk of outbreak than others, 74 

intervention policies may be optimised by particularly targeting such households. 75 

Moreover, as vaccine uptake is shown to be influenced by perceived risk of infection 76 

and vaccine effectiveness (25,26), identifying the household-specific risk of infection 77 

and the possible reduction by vaccines may support highlight the individual benefit of 78 

vaccination. 79 

In the present study, we applied a highly flexible household transmission model that 80 

accounts for heterogeneity to a large dataset to investigate the within-household 81 

transmission dynamics of seasonal influenza. The dataset included more than 10,000 82 

primary school students with the infection status not only of students but also of their 83 

household members, which was expected to provide broader understanding on the 84 

within-household transmission dynamics. Particularly laying our focus on the effect of 85 

familial roles and household compositions, we compared multiple models with different 86 

levels of complexity to find the best model to describe the transmission patterns. 87 

Methods 88 
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Data source 89 

We used data from a citywide primary school influenza survey. At the end of 90 

the 2014/15 season (early March), parents of students at all 29 public primary schools in 91 

Matsumoto city, Nagano prefecture, Japan, were asked to respond to a questionnaire 92 

consisting of a variety of questions including whether the students had influenza during 93 

the season, onset date and observed symptoms, vaccination history, family composition 94 

and who in the same household had influenza episodes during the season. The data was 95 

originally collected for an observational study on the effect of prevention measures 96 

against seasonal influenza (Uchida et al., 2017) (27).  In the present study, we only 97 

considered data on influenza episodes in students, their household composition and 98 

influenza episodes in the household members. Participants reported the number of 99 

siblings in the household, and also ticked the type of family members (such as “father”, 100 

“younger sister” or “uncle”) with whom they live, as well as whether they acquired 101 

influenza in the 2014/15 season. Among 13,217 students eligible, 11,390 (86%) 102 

responded to the survey. After removing those with missing values, 10,486 surveys 103 

were used in the present study. Characteristics of the population and frequent household 104 

compositions are shown in Tables 1 and 2. Further details of the data collection can be 105 
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found in the original study (27). The analysis was approved by the ethics committee at 106 

London School of Hygiene & Tropical Medicine (approval number: 2715). 107 

In the survey, all students who reported acquiring influenza also reported that 108 

they were diagnosed at a medical institution. For other household members, clinical 109 

diagnosis was not clearly required on the question sheet. In Japan, rapid diagnostic kits 110 

(RDKs) are usually used for suspected patients. International systematic reviews 111 

estimated that the sensitivity and specificity of RDKs are 50-70% and 98-99%, 112 

respectively (28,29). However, the sensitivity for studies conducted in Japan included in 113 

these reviews was relatively high (range: 72.9-96.4%), consistent with other earlier 114 

studies conducted in Japan (30–32). Considering that many Japanese primary schools 115 

encourage students presenting influenza-like symptoms to consult medical institutions 116 

so that they are granted absence, we believe that the reported influenza episodes in the 117 

dataset were sufficiently inclusive for our analysis. We also performed sensitivity 118 

analysis to address possible underreporting in the survey (described later). 119 

 120 

Heterogeneous chain binomial model 121 

We employed the chain-binomial model presented in (33) which allows for 122 

heterogeneous transmission. Let N be a vector representing the number of family 123 
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members stratified by individual type (e.g., father, mother, child, etc.) in a household. 124 

The probability that a certain combination of individuals (represented by a vector n) in 125 

the household are infected by the end of the season is given by the following recursive 126 

equations. 127 

𝜋(𝒏;𝑵, 𝜺, 𝐻) = 𝜋(𝒏;𝒏, 𝜺, 𝐻)∏(
𝑁𝑘
𝑛𝑘
)𝑆𝑘(𝒏, 𝜺, 𝐻)

𝑁𝑘−𝑛𝑘

𝑘

, 

𝜋(𝒏;𝒏, 𝜺, 𝐻) = 1 −∑𝜋(𝝂;𝒏, 𝜺, 𝐻)

𝝂<𝒏

. 

(1) 

where Nk and nk are the k-th component of N and n, respectively (1 ≤ 𝑘 ≤ 𝐾). The sum 128 

∑𝝂<𝒏  is taken for all vector ν satisfying 0 ≤ 𝜈𝑘 ≤ 𝑛𝑘 (∀𝑘) and 𝝂 ≠ 𝒏. ε is the risk of 129 

external infection for each type of individual (a heterogeneous version of CPI; we avoid 130 

the term CPI as our model assumes household members experiences infection from 131 

different sources outside the household and not from a single “general community”). 132 

The susceptible-infectious transmission probability (SITP) ρkl is the probability of 133 

within-household transmission for a specific infectious-susceptible pair (17) and has 134 

been used to quantify within-household transmission. However, it is more convenient to 135 

use the effective household contact matrix 𝐻 = (𝜂𝑘𝑙) in the model; 𝜂𝑘𝑙 is defined to 136 

satisfy 𝜌𝑘𝑙 = 1 − exp(−𝜂𝑘𝑙), and is interpreted as the amount of contact that leads to 137 

within-household transmission (effective contact) from type l to k. That is, ηkl denotes 138 

the amount of exposure that an individual k experiences when another individual of type 139 
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l in the same household is infectious. 𝑆𝑘(𝒏, 𝜺),  the probability that a type k individual 140 

escapes infection from both outside and inside the household, is given as 141 

𝑆𝑘(𝒏, 𝜺, 𝐻) = (1 − 𝜀𝑘) exp(−∑𝜂𝑘𝑙𝑛𝑙
𝑙

). (2) 

 (1 − 𝜀𝑘) is the probability that the individual is not infected outside the household, and 142 

exp(−∑ 𝜂𝑘𝑙𝑛𝑙𝑙 ) is the probability that the individual is not infected from any of the 143 

household infectives. When a dataset {𝑵𝒊, 𝒏𝒊} contains the family composition and 144 

infection status in each household i, the likelihood function is given as 145 

𝐿(𝜺,𝐻; {𝑵𝒊, 𝒏𝒊}) =∏𝜋(𝒏𝒊;𝑵𝒊, 𝜺, 𝐻)

𝑖

. (3) 

The likelihood 𝜋(𝒏𝒊; 𝑵𝒊, 𝜺, 𝐻) is computed by recursively applying Equation (1) starting 146 

with 𝜋(𝟎; 𝟎, 𝜺,𝐻) = 1.  147 

In the present study, we classified each individual in households as one the 148 

following type: “father”, “mother”, “student”, “sibling”, or “other”. “Students” are 149 

participants of the survey (i.e., students of primary schools in Matsumoto city), and 150 

“siblings” are their elder/younger siblings, who may have also been recruited in the 151 

survey if they are primary school students (however, they are not linked in the data and 152 

thus unidentifiable as participants). The parameters for “students” and “siblings” were 153 

differentiated because “siblings” are not necessarily primary school students, therefore 154 

their characteristics may be different from “student”. “Father” and “mother” were 155 
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labelled as “single-parent” if they are only one parent in the family; models were 156 

considered in model selection where their parameter values were differentiated from 157 

cohabiting parents (details described in “model selection”). Most individuals classified 158 

as “other” were grandparents (90.1%). Uncles/aunts accounted for 6.7%, and the 159 

remaining 3.2% was “none of the above categories”. 160 

 161 

Transmission risk in households 162 

We modelled the possible heterogeneity in household transmission by 163 

parameterising the effective household contact matrix 𝐻 = (𝜂𝑘𝑙). Our basic 164 

assumptions are: (i) each pairs of individuals have a specific “intensity of contact”; (ii) 165 

the relative importance of each household contact may be reduced if an individual 166 

experiences a large amount of household contacts in total; (iii) the contact intensity 167 

adjusted by the total amount of contact is proportional to the force of infection. That is, 168 

we modelled ηkl as 169 

𝜂𝑘𝑙 = 𝛽
𝑐𝑘𝑙
𝐶𝑘

𝛾 . (4) 

Ck represents the total number of household contacts experienced by an individual of 170 

type k, which we introduced to investigate how ηkl differs in households of different 171 
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sizes and compositions. Noting that the number of individuals in contact is 𝑁𝑘 − 1 if 172 

k=l, we get 173 

𝐶𝑘 =∑𝑐𝑘𝑙
𝑙

(𝑁𝑙 − 𝛿𝑘𝑙), (5) 

where δkl is the Kronecker delta. The value of the exponent parameter γ determines how 174 

strongly 𝜂𝑘𝑙 is scaled by Ck, which associates our model with density-dependent vs. 175 

frequency-dependent mixing assumptions (34). γ=0 corresponds to the density 176 

dependent mixing assumption, where the force of infection is proportional to the total 177 

number of contacts (weighted by intensity) with infectives, whereas γ=1 corresponds to 178 

the frequency dependent mixing assumption, where it is the proportion of infectious 179 

contacts among total contacts that matters. In addition to γ=0 and γ=1, γ was also 180 

allowed to be estimated as a free parameter in the model selection, representing a 181 

mixture of density-dependent and frequency-dependent mixing. 182 

The contact intensity matrix (ckl) is interpreted as the per-individual version of the 183 

contact matrix (𝑐𝑘𝑙 = 𝑏𝑘𝑙/𝑁𝑙 where 𝑏𝑘𝑙 is the contact matrix). ckl is generally a K×K 184 

matrix and contains too many parameters to estimate. We therefore reduced the number 185 

of parameters by categorising contacts into the following 5 pairs first:  186 

𝑐𝑘𝑙 =

{
 
 

 
 
𝑐CC (Child − Child)
𝑐FC (Father − Child)

𝑐MC (Mother − Child)

𝑐OC (Other − Child)

𝑐AA(Adult − Adult)

 (6) 
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Child included both “student” and “sibling”, and adult included “father”, “mother” and 187 

“other”. (In models where “single-parent” is a separate type, another parameter 188 

𝑐SC (Single parent − Child) was added.) The matrix was assumed to be symmetric, i.e, 189 

𝑐𝑘𝑙 = 𝑐𝑙𝑘. Since we did not have a measurement for the intensity of household contacts 190 

in our dataset, we used relative values of 𝑐𝑘𝑙 in our analysis where 𝑐AA was assumed to 191 

be 1. β is approximately equal to the probability of transmission in a (hypothetical) 192 

household composed of only father and mother (since 
𝑐𝑘𝑙

𝐶𝑘
𝛾 = 1 regardless of 𝛾). 193 

 194 

Statistical analysis and model selection 195 

We sampled parameter values from a posterior distribution yielded from the 196 

likelihood function (3) and priors in Table 3 using the Markov-chain Monte Carlo 197 

(MCMC) method. An optimal variance-covariance matrix for proposal was explored by 198 

Adaptive-Metropolis algorithm and then Random-walk Metropolis algorithm was used 199 

to obtain final samples. All MCMC sampling was performed using the R package 200 

{LaplacesDemon}. The scripts to produce MCMC samples for the main results is 201 

reposited on GitHub (https://github.com/akira-endo/HHstudy_FluMatsumoto2014-15). 202 

First, we tested various possible combinations of assumptions on the effective 203 

contact matrix and the risk of external infection (shown in Table 3), and compared their 204 
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goodness of fit by Widely-applicable Bayesian Information Criterion (WBIC) (35). 205 

Model variants included (i) homogeneous or heterogeneous mixing in households (ckl), 206 

(ii) uniform or heterogeneous risk of external infection (εk), (iii) the value of the 207 

exponent parameter (γ), and (iv) whether the parameter values for a single parent is 208 

differentiated from those of cohabiting parents. Characteristics of compared models are 209 

documented in the supplementary materials, Section 1. WBIC for each model was 210 

computed from 80,000 MCMC samples which were thinned from 125,000 samples × 8 211 

chains, so that the chains had ESS ~40,000. 212 

We then used the models selected by WBIC to estimate the parameters. As final 213 

samples, 10,000 thinned samples were recorded from 40,000 pre-thinned MCMC 214 

samples. It was ensured that the effective sample size (ESS) was at least 500 for each 215 

parameter. 216 

Using the estimated parameters, we computed the source-stratified risk of infection and 217 

the risk attributable to the introduction into the household (see the supplementary 218 

materials Section 2 for further details). 219 

 220 

Further model development 221 
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When the parameters were estimated with the best model selected, we found that the 222 

estimates for 𝑐FC and 𝑐OC were very similar, which suggested that we might be able to 223 

equate these two parameters and further stratify the contacts between adults (𝑐AA) with 224 

the degree of freedom earned. We tested some other contact intensity matrices, 225 

including 226 

𝑐𝑘𝑙 =

{
 
 

 
 

𝑐CC (Child − Child)

𝑐MC (Mother − Child)

𝑐FM (Father − Mother)

𝑐OO (Other − Other)

𝑐X (Cross generational)

 (7) 

which gave the best performance in the end. Explored candidate models and selection 227 

results are detailed in the supplementary materials Section 2. 228 

 229 

Sensitivity analysis 230 

We performed sensitivity analysis to address potential biases in our dataset. We 231 

considered in our sensitivity analysis (i) ascertainment bias, (ii) different susceptibility 232 

in children, (iii) multiple counting of households and (iv) censoring of sibling cases. 233 

The first two points are related to the assumptions in our models. Influenza can 234 

have a low reporting rate due to mild clinical presentation (including asymptomatic 235 

infections), and therefore some infectious individuals may not have been included in our 236 

dataset. The reporting rate of influenza is considered to be very high in primary school 237 
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students in Japan, who are often required to report influenza to their schools. On the 238 

other hand, the reporting rate of adults can be lower, as they may be less likely to seek 239 

medical treatment than children. A serosurvey conducted in Japan after the 2009/10 240 

H1N1 influenza pandemic suggested that while influenza in children were almost fully 241 

reported, the reporting rate of adults were relatively low (30-50%) (36).  242 

Another possible difference between adults and children is susceptibility: 243 

adults may be less likely to be infected by the same amount of exposure due to the 244 

previous history of infections or stronger immune systems than children. Conversely, 245 

children may exhibit lower susceptibility if the vaccine uptake for them is higher than 246 

adults. The majority of household transmission studies from a systematic review (8) 247 

reported significant association between susceptibility and age (although this becomes 248 

the minority when limited to the studies with PCR-confirmed cases). Our baseline 249 

model assumes that transmissibility β is identical between individuals, but in reality 250 

transmissibility might depend on the age of the susceptibles. 251 

The remaining points explored in sensitivity analysis are inherent limitations in 252 

our dataset. One of the limitations is that, because students in the same household 253 

responded to the questionnaire separately, households with multiple siblings may have 254 

been counted more than once. As this was an anonymous questionnaire, data obtained 255 
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from different students were not linked with each other even if they were from the same 256 

household. If there was more than one child in a household who was eligible for the 257 

study, the same household transmissions can appear multiple times in the dataset, which 258 

could modify the results. Lastly, because of the design of the questionnaire, the number 259 

of influenza cases in siblings may have been underreported. The questionnaire asked 260 

whether each type of individual in the same household had influenza during the season, 261 

and the respondents ticked if at least one individual of that type was infected since it 262 

was a yes-no question. Therefore, even if there was more than one case in the same type 263 

of individuals, the number was not reported and treated as a single case; that is, if a 264 

respondent has two older brothers, he/she only reports that “older brother had 265 

influenza”, and there was no distinction on the dataset whether it was only one or both 266 

of them. 267 

Each potential source of bias was addressed by incorporating the data-generating 268 

process causing the bias into the model. Technical details of the sensitivity analysis can 269 

be found in the supplementary materials Section 3. 270 

 271 

Results 272 
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We found that considerable heterogeneity existed in both the risk of external 273 

infection and the risk of within-household transmission (Table 3 and Figure 1). The best 274 

performing mathematical model suggested that children had a comparatively high risk 275 

of infection outside the household: 20% in the primary school students and 16% in their 276 

siblings, compared to only 1-3% in adults. Within-household contact patterns showed 277 

strong generational clustering. High contact intensities were observed within the same 278 

generation (between siblings, parents and grandparents), and the intensity of cross-279 

generational contacts was less than half the intensity within the same generation. 280 

Contact between mothers and children was an exception to this, showing a higher 281 

intensity than between parents. The estimated contact intensity relative to that between 282 

parents (father-mother) was highest between other-other (1.97; CrI: 1.10-3.24), most of 283 

whom were grandparents in our data, followed by mother-child (1.16; CrI: 1.00-1.32) 284 

and child-child (1.04; 0.88-1.23). The model did not support a significant difference 285 

between parameter estimates for single and cohabiting parents. 286 

The inferred networks of household transmission suggest that various contact 287 

patterns between household members exist in different household compositions. The 288 

contact intensity between individuals are shown in network graphs (Figures 3A-3C) for 289 

three selected characteristic household composition models, “nuclear family”: FM-2 290 
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(see Table 2 for the notation), (b) “many-siblings family”: FM-4, and (c) “three-291 

generation family”: FM-2-2. Mothers served to bridge between the generations of 292 

children and parents; clusters of grandparents were relatively independent of other 293 

household members. 294 

Overall risk of infection and the breakdown of infection source presented in 295 

Figures 3D–3F suggests that risk of infection in children was mostly from outside the 296 

household, whereas larger proportion of risk in adults was attributed to within-297 

household transmission. Risk of within-household infection increased when more 298 

children were in the household (Figure 3E); however, the influence of additional 299 

members categorised as “others” (grandparents in most cases) was minimal, probably 300 

due to their low risk of external infection and contact intensity (Figure 3F). On the other 301 

hand, for grandparents in a typical three-generation household, the risk of infection from 302 

inside the household was twice the risk from outside. 303 

Once influenza was brought into a household by a student, the conditional risk 304 

of infection in other members of the household became substantially higher; the 305 

implication of disease introduction into households can be seen in the simulated risk of 306 

infection after introduction (Figures 3G–3I). In “nuclear family” and “three-generation 307 
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family” models, the risk in adults increased by a factor of 2-3 if a primary school 308 

student in the family was infected. 309 

The effective household contacts that each type of individual experiences are 310 

displayed in Figure 4, indicating the substantial variation in household contact patterns 311 

between individuals and between households. SITP typically ranged around 5-20%, 312 

depending on the contact pair and household composition. Reflecting the estimated 313 

value of γ=0.5 (CrI: 0.3-0.7), the total amount of effective household contacts was 314 

greater in larger households, but the weight of each single contact (the effective contact 315 

corresponding to a contact with one individual in the household) decreased with 316 

household size. This is because the effective household contact ηkl that one experiences 317 

followed an “inverse square root law”, i.e., ηkl is inversely proportional to the square 318 

root of the total amount of contact Ck (𝜂𝑘𝑙 ∝ 𝐶𝑘
0.5; see Equation 4). 319 

While Figure 4 summarises the heterogeneous within-household transmission 320 

patterns, one must note that the secondary transmission is conditional to infection in the 321 

primary case. When the contacts were weighted by the risk of external infection to 322 

visualise the source of primary and secondary infections for each individual, it can be 323 

seen that the children were responsible for the most of secondary transmissions within 324 

households (Figures 5): as children were more than five times likely to acquire 325 
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influenza from outside the household than adults, they were the most likely source of 326 

secondary transmission. As a consequence, the individual risk of infection was mostly 327 

determined the number of children in the household. 328 

The sensitivity analysis suggested that the effective household contacts 329 

between children may have been lower than the baseline estimates under some 330 

assumptions (Figure S1). However, the overall trend did not change substantially. The 331 

importance of children introducing influenza into household remained unchanged 332 

throughout the sensitivity analysis. 333 

The predicted and observed frequency of data compared in Figure S2 illustrate 334 

the goodness of fit of our model. The model prediction was highly consistent with the 335 

observed outcome patterns, suggesting our model successfully described the 336 

heterogeneous transmission patterns of influenza in households. 337 

 338 

 339 

Discussion 340 

We applied a household-based mathematical model to a large-scale influenza 341 

survey data including 10,000 primary school students and their families in Matsumoto 342 

city, Japan, 2014-15. With the dataset of an extensive sample size on morbidity and 343 
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familial roles of household members, the model captured heterogeneous transmission 344 

patterns in households in greater detail than previous household studies. 345 

Our results are supportive of the common perception that influenza is brought 346 

into households by schoolchildren (37). With their high probability of contracting 347 

influenza outside the household, they were responsible for most secondary 348 

transmissions within households. Once they brought virus from outside the household, 349 

their mother and other siblings were exposed to a higher risk of within-household 350 

secondary transmission. The estimated breakdown of infection source showed that 351 

within-household transmission accounted for a large proportion of the overall risk in 352 

adults. The relative importance of within-household transmission was especially 353 

highlighted in grandparents in “three-generation” households. In a typical three-354 

generation family composed of two children, two parents and two grandparents, the risk 355 

of infection in grandparents was tripled by within-household transmission. Besides, it 356 

must be noted that an infection of a grandparent is likely to be followed by that of 357 

another due to a high transmission risk between grandparents. These emphasise the 358 

importance of controlling school epidemic and household contagion, as the symptoms 359 

of influenza tends to be more severe in the elderly (37–39).  360 
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The results of the present study could have implications for household-level 361 

control measures. There are two steps in a household outbreak: introduction and within-362 

household transmission. Due to the different risk patterns between the two steps, the 363 

focus of prevention measures should also change accordingly. At the pre-introduction 364 

stage when no one in the household is yet infected with influenza, the primary target is 365 

to prevent the first infection in the household from happening. Children, with the risk of 366 

external infection up to 20%, are most likely to be the first case in the household and 367 

thus should be prioritised at this stage. As the high risk of external infection is probably 368 

from schools (3), household members are advised to monitor the trend of school 369 

outbreaks and guide children to comply with daily precautions (40,41). Our results 370 

suggest that vaccinating children is an effective strategy not only because their risk of 371 

infection is high but also because they are responsible for a substantial fraction of 372 

within-household secondary infections. Especially for adults living with many children, 373 

protecting children from infection is as important as (or even more important in some 374 

cases) protecting themselves. If one of the household members contracts influenza 375 

despite the pre-introduction control effort, the primary target shifts to preventing further 376 

transmissions within the household. Household members are now exposed to an 377 

infectious person within the same household, which substantially elevates their risk. At 378 
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this post-introduction stage, preventing subsequent transmissions is important because 379 

every additional infection further increases the exposure. Our findings about household 380 

transmission patterns can be used to identify key individuals in the household network. 381 

For example, if the primary case is a child, the most probable secondary case is either 382 

the mother or another sibling. If the mother gets infected, that may be followed by a 383 

transmission to either the father or another child. Direct transmissions between children 384 

and father/grandparent may be relatively rare. Grandparents are suggested to be at 385 

comparatively low risk from other household members. However, their contacts with 386 

each other are closer than any other pair of household members, which warrants 387 

attention provided the high disease burden of influenza in the elderly. 388 

To our best knowledge, the present study first reported a parametric 389 

relationship between within-household influenza transmission and household 390 

composition with high precision. With a detailed dataset consisting of up to 10,000 391 

households, the present study was able to employ a highly flexible modelling 392 

framework to explore previously used modelling assumptions in great detail. A decrease 393 

of the per-person risk of within-household infections with household size has been 394 

observed in previous studies (8); our model selection supported that this reduced effect 395 

of household contact is better characterised as a function of the total amount of contact 396 
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experienced by an individual (Ck) rather than the household size (N), and that the 397 

relationship follows an inverse square root law. Previous modelling studies used 398 

different frameworks to study the relationship between SITP and household 399 

composition. Cauchemez et al. (2014) (14) selected the frequency-dependent mixing 400 

assumption (SITP inversely proportional to N) over the density-dependent mixing (SITP 401 

independent of N). Many similar studies were also supportive of the frequency-402 

dependent mixing assumption (13,18,21), while Azman et al. (2013) reported an 403 

increased transmission rate in larger household (SITP proportional to N0.7; although not 404 

conclusive due to the limited sample size). One of the strengths of our results is that not 405 

only did we propose a better alternative measure to scale SITP than household size, we 406 

also differentiated the model from both density- and frequency dependent models with a 407 

sufficient support. The best model suggested that within-household transmission 408 

patterns lies half-way between the two extremes of density- and frequency-dependent 409 

models (we call this the semi-density-dependent model as the total effective contact 410 

experienced by an individual is proportional to the total contact intensity to the power of 411 

0.5). Although a similar approach (without incorporating heterogeneous contact 412 

patterns) was employed in (18), where the authors estimated the STIP proportional to 413 

N1.2 , their CrI was too wide (0.13-2.3) to be conclusive. The large-scale dataset enabled 414 
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us to obtain a narrower CrI (0.30-0.72) that distinguished the model with significance 415 

from the density- and frequency-dependent models. In the semi-density-dependent 416 

model, the total amount of effective contact increases in larger household despite the 417 

reduced importance of each contact (Figure 4). Therefore, if the risk of external 418 

infection is similar between household members, having many household members is a 419 

risk factor (which is not usually the case in the frequency-dependent model) because the 420 

effect of reduced SITP is outweighed by the increased number of household members 421 

who potentially bring infection into the household. Although such effect was not clearly 422 

visible in the present study due to the almost exclusive primary infections in children 423 

(Figure 5), more distinct characteristics may be seen in other epidemic settings with the 424 

semi-density dependent model. 425 

Multiple limitations in the present study must be acknowledged. Firstly, the 426 

case definition in the dataset was not very strict. The data was collected by self-written 427 

questionnaires and it was impossible to validate their response. In the dataset, all student 428 

cases were reported to be with a clinical diagnosis, and more than 95% of diagnoses 429 

were based on RDKs (42). Considering that primary school students in Japan are highly 430 

motivated to visit medical institutions to obtain a leave of absence from school, we 431 

believe that our data was able to capture influenza incidence in primary schools at high 432 
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accuracy. However, it is not clear if the same applies to their household members; 433 

diagnosis was not explicitly required for household members on the question sheet, 434 

although the term “influenza” rather than “influenza-like illness” was used. Moreover, 435 

subclinical infections may have been present both in children and adults. Because of 436 

this, we considered underreporting in the sensitivity analysis, leaving the main 437 

conclusions unaltered. Secondly, our model formulation is only one possible candidate 438 

for parameterising within-household transmission patterns. “Contact” in our model was 439 

merely a hypothetical quantity and may not be directly related to actual physical or 440 

social contacts. We also had to use a relatively simple contact pattern matrix for 441 

successful parameter estimation. Although our model successfully explained the current 442 

data incorporating in an interpretable manner, further development may be sought in the 443 

future, including empirical characterisations of household contact patterns which is 444 

currently lacking. A recent study have suggested the possible age-dependency in the 445 

contact frequency between siblings (6), but the age of household members were not 446 

available in the current dataset. More informative dataset and understanding of age-447 

dependent household contact patterns will yield further clarification on this point. 448 

Furthermore, one must be aware that our analysis based on a unique study population, 449 

i.e., households with at least one primary school student in Matsumoto city, may not be 450 
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overgeneralized. Extrapolating our household transmission model to household 451 

compositions not included in the dataset, e.g., household with no children, may be 452 

unreliable. Thirdly, the present study radically simplified the risk factors of individuals. 453 

Covariates other than familial roles and household compositions, e.g., comorbidities, 454 

vaccination history, previous exposures or habits of personal hygiene, were not 455 

considered. The risk of external infection in children was estimated as a single value, 456 

which may potentially vary between classes, grades and schools. Overdispersion in 457 

infectiousness as addressed in (13,43,44) was also assumed to be negligible. 458 

Nonetheless, it is of note that the model had a fairly good performance despite 459 

considerable simplification. 460 

Although more follow-up studies that supplement our findings are to be 461 

awaited, we believe that the present study has presented useful insights on the 462 

household-level dynamics of influenza. Understanding of the household-specific contact 463 

patterns will help us illustrate how influenza spreads across multiple social settings and 464 

facilitate individual and political decisions on disease control accounting for household-465 

specific characteristics. 466 

 467 
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Tables 475 

Table 1. The number of individuals and influenza cases in each type 476 

Individual type  Counts Cases Attack ratio (%) 

Student Overall 10,410 2,137 20.5 

 Male 5,311 1,132 21.3 

 Female 5,099 1,005 19.7 

 Grade 1  1,831 406 22.2 

 2  1,773 363 20.5 

 3  1,731 342 19.8 

 4  1,717 375 21.8 

 5  1,674 322 19.2 

 6  1,684 329 19.5 

Father  9,201 629 6.8 

Mother  10,260 866 8.4 

Sibling  12,632 2,320 18.4 

Other  4,356 191 4.4 
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* The number of respondents and cases for “Father”, “Mother”, “Sibling” and “Other” 477 

is obtained from the response to the questionnaire and may be redundant due to the 478 

inclusion of multiple students from the same household. 479 

 480 

Table 2. Frequency distribution table for compositions of households included in the 481 

retrospective data 482 

Order Composition # of households Order Composition # of households 

1 FM-2 3,915 11 M-3 160 

2 FM-3 1,971 12 FM-1-2 134 

3 FM-1 899 13 FM-1-1 97 

4 FM-2-2 606 14 M-1-2 86 

5 M-2 429 15 M-2-2 80 

6 FM-2-1 415 16 FM-2-3 70 

7 FM-3-2 297 17 FM-3-3 57 

8 FM-4 250 18 FM-4-2 55 

9 FM-3-1 232 19 M-1-1 43 

10 M-1 205 20 M-2-1 39 

    Subtotal 10,040 (95.7%) 

Only 20 most frequent compositions are shown, accounting for 95.7% of the total 483 

10,486 responses. Household compositions are denoted in the following manner. 484 
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FM: households with both father and mother; M: households with only mother; The first 485 

number: the total number of siblings in the household; The second number (where 486 

applicable): the number of other members (mostly grandparents) in the household. 487 

 488 

Table 3. Parameter estimates by the best model. 489 

Parameter  Prior Estimate (95% CrI) 

External risk (εk) Student 

1-LogUnif(0,1)* 

0.197 (0.188-0.207) 

 Sibling 0.161 (0.153-0.169) 

 Mother 0.035 (0.030-0.040) 

 Father 0.038 (0.033-0.043) 

 Other 0.013 (0.009-0.017) 

Contact intensity (ckl) Child-Child 

Unif(0,∞) 

1.04 (0.88-1.23) 

 Mother-Child 1.16 (1.00-1.32) 

 Father-Mother 1 (0.748-1.282) 

 Other-Other 1.97 (1.10-3.24) 

 Cross generational 0.43 (0.35-0.52) 

Transmissibility (β)  (not sampled by 

MCMC) 

0.20 (0.16-0.24) 

Exponent parameter 

(γ) 

 

Uniform(−∞,∞) 0.51 (0.33-0.69) 

* Cumulative force of infection is uniformly distributed. 490 

 491 

Figures 492 
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 493 

 494 

Figure 1. A schematic illustration of household chain-binomial model. 495 

Nodes in different colours corresponds to different types of individuals (e.g., father, 496 

sibling, etc.). Transmission patterns are illustrated taking household i as an example. 497 

Coloured dotted edges represent the risk of external infection ε to each individual. Solid 498 

grey edges denote person-to-person transmission risk (PTR) from one type of person to 499 

another. PTR from type l to k is given as ρkl, which refers to the risk of transmission 500 

given that the individual of type l is infectious. Households have different compositions 501 

and ρkl may also vary according to the composition. On the other hand, ε is the risk from 502 

outside the household and thus assumed to be identical across households. 503 

 504 
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 505 

Figure 2. Estimated risk of external infection and relative intensity of within-household 506 

contact. (A) Estimated risk of external infection for each type of individual. (B) 507 

Estimated relative intensity of within-household contact. Values are scaled so that the 508 

median of contact intensity between adults is 1 (horizontal dotted line). Whiskers 509 

indicate 95% credible intervals (CrI). 510 

 511 
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 512 

Figure 3. Contact patterns and risk of infection in specific household compositions. 513 

(A)-(C) Network graphs showing contact intensity between individuals for different 514 

household compositions: (A) “nuclear family”, (B) “many-siblings family”, (C) “three-515 

generation family”. Node colours represent the type of individuals. Edges denote the 516 

relative intensity of contact (𝑐𝑘𝑙) between individuals. 517 

(D)-(F) Risk of infection in households of different compositions stratified by source. 518 

Light grey: risk of infection from outside the household; dark grey: risk of infection 519 
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from within the household. Whiskers indicate the 95% CrI. 520 

(G)-(I) Unconditional risk of infection and conditional risk given introduction of 521 

infection into a household. Light grey: overall risk of infection for each individual in the 522 

household; dark grey: risk of overall infection conditional that a student is infected 523 

outside and introduces infection into the household. Infection of the student is given and 524 

thus the conditional risk for the student is not shown. Whiskers indicate the 95% CrI. 525 

 526 

 527 

Figure 4. The effective amount of contacts experienced by individuals (𝑅𝑘𝑙) in different 528 

household compositions. 529 
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(A) Child; (B) Father; (C) Mother; (D) Other. The coloured compartments denote the 530 

breakdown of effective contacts allocated to each individual in the household, which 531 

corresponds to SITP given that individual is infectious. 532 

 533 

 534 

Figure 5. The risk of primary/secondary infection to individuals in different household 535 

compositions and its source.  536 

(A) Child; (B) Father; (C) Mother; (D) Other. The coloured compartments denote the 537 

breakdown of sources. Household compositions are displayed in the same order as 538 

Figure 4. The risk of primary infection in children was set to be 16.4%, the average 539 
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between those of “students” and “siblings”. Note that the scale of the y axis in (E) is 540 

different from the other 3 panels. 541 

 542 
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