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Abstract  17 

Background 18 

Declining incidence and spatial heterogeneity complicated the design of phase 3 Ebola 19 

vaccine trials during the tail of the 2013-16 Ebola virus disease (EVD) epidemic in West 20 

Africa. Mathematical models can provide forecasts of expected incidence through time 21 

and can account for both vaccine efficacy in participants and effectiveness in 22 

populations. Determining expected disease incidence was critical to calculating power 23 

and determining trial sample size. 24 

Methods 25 

In real-time, we fitted, forecasted, and simulated a proposed phase 3 cluster-26 

randomised vaccine trial for a prime-boost EVD vaccine in three candidate regions in 27 

Sierra Leone. The aim was to forecast trial feasibility in these areas through time and 28 

guide study design planning.   29 

Results 30 

EVD incidence was highly variable during the epidemic, especially in the declining 31 

phase. Delays in trial start date were expected to greatly reduce the ability to discern an 32 

effect, particularly as a trial with an effective vaccine would cause the epidemic to go 33 

extinct more quickly in the vaccine arm. Real-time updates of the model allowed 34 

decision-makers to determine how trial feasibility changed with time.  35 
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Conclusions 36 

This analysis was useful for vaccine trial planning because we simulated effectiveness as 37 

well as efficacy, which is possible with a dynamic transmission model. It contributed to 38 

decisions on choice of trial location and feasibility of the trial. Transmission models 39 

should be utilised as early as possible in the design process to provide mechanistic 40 

estimates of expected incidence, with which decisions about sample size, location, 41 

timing, and feasibility can be determined. 42 

 43 
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 48 

Introduction 49 

 50 
West Africa experienced the largest outbreak of Ebola virus disease (EVD) to date 51 

during 2013-16. This epidemic resulted in more than 25,000 cases and 10,000 deaths. 52 

As the epidemic unfolded in 2014, development of candidate vaccines was accelerated, 53 

including evaluation in phase 1-2 studies and phase 3 planning. However, the rapidly 54 

changing incidence both geographically and in time posed major challenges to the 55 

design and planning of phase 3 trials. Typical study design calculations do not allow for 56 

varying infection rates within and between communities over time, which is especially 57 

problematic during the tail of an epidemic, when few cases occur. Computer simulations 58 

employing empirical statistical models can mitigate some of these concerns however 59 

they require accurate assumptions on incidence, heterogeneity and, in addition, do not 60 

capture the mechanism of an outbreak. Moreover, an effective vaccine used widely in a 61 

given area (as would be the case in large-scale, population-based vaccine trials) could in 62 

itself further reduce the incidence.  63 

Dynamic models of EVD transmission were developed during the epidemic to 64 

understand the patterns of spread of the virus and predict the course of the outbreak 65 

[1–4].  If these models are appropriately parameterised and updated, then they can be 66 

used to predict incidence and how it may change in space and time [5]. In addition, 67 

dynamic models can account for both the direct and indirect effect of vaccine-induced 68 

immunity and its impact on the transmission dynamics.  That is, they can be used to 69 

assess the extent that the trial itself may affect the transmission dynamics.  70 



Collaboration between the Centre for Mathematical Modelling of Infectious Disease 71 

(CMMID) at the London School of Hygiene & Tropical Medicine and Janssen Research & 72 

Development (Janssen R&D) was established to rapidly extend a mathematical model of 73 

EVD [3] to simulate a cluster-randomized phase 3 vaccine trial in Sierra Leone. The 74 

dynamic model and trial simulations were updated in real-time to match the latest 75 

incidence data available.  This collaboration thus enabled a real-time, dynamic 76 

assessment of the feasibility of a potential phase 3 trial, which ultimately was 77 

implemented as a safety and immunogenicity study: EBOVAC-Salone (NCT02509494). 78 

This paper describes how the model was used to inform the planning of the trial as well 79 

as the decision-making to abandon the effectiveness part of the protocol. 80 

 81 

Methods 82 

Collaboration 83 

Collaboration was initiated between CMMID and Janssen R&D in February 2015. Janssen 84 

R&D was seeking a partner to guide study design and feasibility planning of a phase 3 85 

effectiveness trial for their heterologous prime-boost vaccine regimen (Ad26.ZEBOV as 86 

prime and MVA-BN®-Filo 28 days later as boost), for which phase 1 trials were on-87 

going.  88 

 89 

CMMID had previously developed mathematical models of EVD transmission to assess 90 

the potential for large outbreaks [6], impact of community care centres on the evolving 91 

epidemic [7], and bed capacity in Sierra Leone [3]. In addition, CMMID members liaised 92 

with WHO on the design and analysis of the WHO EVD vaccine trial [8].  93 

 94 

Collaboration offered a unique opportunity to explore the use of a dynamic transmission 95 

model to evaluate study feasibility. In this paper, we present the model-based incidence 96 

projections and trial simulations from 15th February 2015, similar to those sent from 97 

LSHTM to the team at Janssen on a weekly basis from February 2015 to May 2015. 98 

These were in turn employed by the clinical study team to evaluate and guide power 99 

calculations, study design as well as trial feasibility. To illustrate the impact of the 100 

evolving epidemic, an update of the projections and simulations at the end of April is 101 

provided as supplementary materials.  102 

 103 

Vaccine trial design 104 



A large-scale cluster-randomized phase 3 trial was designed to evaluate the 105 

effectiveness of prime-boost vaccine regimen against laboratory-confirmed EVD in an 106 

outbreak setting in Sierra Leone [9]. Sierra Leone is administratively divided into 107 

districts, districts into chiefdoms, and chiefdoms into sections.  A trial cluster would be a 108 

section. With vaccine availability at time of study design of up to four hundred thousand 109 

doses of both prime and boost vaccine, approximately 160 clusters of 5000 participants 110 

(800,000 in total) were to be assigned in a 1:1 ratio to immediate vaccination versus no 111 

vaccination (control), whereby vaccination would be offered to the control group after 112 

effectiveness was established.  113 

Initially, feasibility, statistical power, and type I error of the trial were evaluated using 114 

simulations which assumed constant incidence through time [9]. Control incidence 115 

assumptions of 3, 5, 10, 20 and 40 EVD cases per arm per month (400,000 person-116 

months) were evaluated, with allowance for heterogeneity between clusters based on 117 

CMMID projections and simulations. However, the rapidly changing epidemic dynamics 118 

in early 2015 meant that these static predictions were unlikely to capture the 119 

epidemiological picture.  120 

 121 

Transmission model for trial 122 

The transmission model extended a previously published model for transmission of EVD 123 

[3]. It was a stochastic compartmental model, where the population was divided into 124 

classes (Figure 1): Susceptible (S), Exposed (E), Infectious not yet notified (I), Infectious 125 

and notified (J) and Removed (R, for recovered and immune, or dead). The infectious 126 

compartment was split in two sub-compartments I and J in order to account for a delay 127 

of (on average) 4.8 days to notification of new cases [4]. The model was extended to 128 

mimic the trial design closely, but modelling cluster-level randomization was not 129 

possible because there was insufficient data available at this spatial scale for fitting. It is 130 

often difficult to predict the tails of epidemics, which are characterized by small, local 131 

outbreaks, and stochastic variation. Instead, we assumed a 1:1 randomization at the 132 

district level and treated the clusters as independent units.  133 

Susceptible people were assumed to be recruited to the trial for the length of the accrual 134 

time, Tr, by entering either the vaccine (VS) or control (C1) arms. An average of 2 weeks 135 

after receiving the prime, vaccinated participants entered the compartment, VP, where 136 

they were assumed to have a reduced risk of infection, σp. On receipt of the boost 137 

vaccine, they were assumed to enter VB, and immediately gain the target vaccine 138 

efficacy, σb (Figure 1). Control participants were assumed to proceed from C1 to C2 at 139 



the same rate as VS to VP to maintain comparability. Parameters that govern rates of 140 

transition are given in Table 1. To account for external influences on transmission – 141 

such as variation in human behavior and introduction of control measures – we 142 

assumed that the transmission rate could change over time; the extent and direction of 143 

change was estimated during the model fitting process [3]. Hypothetical vaccine efficacy 144 

values were defined in February 2015 for the power calculation of the effectiveness 145 

trial. These values were conservative estimates, chosen to ensure that the planned trial 146 

would have sufficient power in the event of unpredicted changes in incidence, and to 147 

decrease the risk of the study. These hypothetical assumptions are only working 148 

hypotheses and do not necessarily reflect the potential effect of this candidate vaccine, 149 

and these hypothetical values need to be assessed in the future. 150 

 151 
Table 1. Parameters used in the model. Most values are fixed based on literature values, while 152 
transmission rate is estimated.  153 
Parameter Description Value Reference 

βt Time varying effective contact rate Estimated Estimated 

λt Time varying force of infection          

  

         
[1]  

1/ϵ Average latent period 9.4 days  [1]  

1/ν1 Average infectious period before 
notification 

4.8 days  [1]  

1/ν2 Average infectious period after notification 6.4 days  [1]  

Rt Time-varying reproduction number βt*(1/ν1+1/v2) -  

Nr Total number of subjects recruited in each 
arm 

170,000 (Kambia) 
230,000 (Port Loko) 
400,000 (Western Area) 

Fixed 
- 
- 

Tr Accrual time 12 weeks Fixed 

rt Linear recruitment rate in each arm Nr/Tr  - 

1/κp  Average time between prime vaccination 
and onset of protection 

14 days Fixed 

1/κp + 1/κb Average time between prime and boost 
vaccination 

28 days Fixed 

1/γ Average duration of vaccine protection 11 months Fixed 

σp  Hypothetical vaccine efficacy for prime 
vaccine 

50% Fixed 

σb Hypothetical vaccine efficacy for prime + 
boost 

60%, 80%, 90% Fixed 

 154 
 155 
Incidence data 156 

The model was fitted to weekly confirmed and probable EVD incidence data from three 157 

districts in Sierra Leone (Kambia, Port Loko, and Western Area) that had on-going 158 

epidemics in February 2015 and were therefore candidate areas for a potential vaccine 159 

trial. Data were drawn from the WHO and Sierra Leone situation reports and ran from 160 

25th May 2014 until the date of fitting and forecast [10,11]. We used Bayesian methods 161 



to fit the model to the data, namely particle Markov Chain Monte Carlo, which allows 162 

parameter estimation in a stochastic framework.  163 

 164 

Forecasting 165 

We sampled the reproduction number (Rt) 5,000 times at the last fitted data point, and 166 

forecasted the epidemic until extinction under the assumption that the reproduction 167 

number did not change from that time. We retained only forecasts that went extinct by 168 

1st January 2016 because all regions showed waning epidemics, and although 169 

persistence for a further year was possible, it was deemed unlikely (Figure S2). Sampled 170 

reproduction numbers therefore usually lie below 1 (Figure S1). Updated estimates of 171 

the reproduction number distribution made in April 2015 have very little density above 172 

1, which suggests this was a reasonable assumption.  173 

The forecasted persistence probability at each point of time t was defined as the 174 

probability that at least one infectious individual remains in the arm at that time, and 175 

was computed empirically by summing over the N forecast trajectories that went extinct 176 

by 1st January 2016: 177 

     
 

 
                 

 

   

 

with i the index of the sample from the posterior. 178 

We evaluated the impact of trial start date by comparing the simulated number of cases 179 

in the vaccine or control arms. We used a one-sided Wilcoxon signed rank test to test for 180 

the pairwise difference in the total number of cases between the vaccine and control 181 

arm. In addition, we assessed the effect of vaccine efficacy on trial success. The 182 

persistence probability is calculated as the proportion of 5000 epidemic simulations 183 

that are non-extinct at each time point.  184 

 185 

Results 186 

Model fits and projections  187 

Using data as of 15th February 2015, we fitted the model to weekly confirmed and 188 

probable EVD cases (Figure 2). At that time, the epidemic was in the tail phase, which is 189 

clear from the rapidly decreasing persistence probability. Visually, incidence data that 190 

has since been observed show excellent agreement with the forecasted epidemics 191 

(Figure 2), where 65%, 59%, and 65% of weekly values lie within the 50% credible 192 

interval (CI) in Kambia, Port Loko, and Western Area respectively. 92%, 92%, and 94% 193 

of points lie within the 95% CI.  194 



 195 

Short-term model projections were contrasted with the static model assumptions from 196 

the power analysis of [9] (Figure 2). In [9] the control incidence of 5 per 400,000 197 

person-months was identified as a threshold of sufficient statistical power to initiate the 198 

trial. The model indicates that the incidence could drop below this threshold between 199 

June and August for all three districts, though the estimates are subject to great 200 

uncertainty as can be seen from the wide 95% credible intervals. Already in April-May, 201 

the incidence was possibly too low to initiate the trial. 202 

 203 

We now describe the results of the vaccine trial simulations. The baseline scenario 204 

presented in this paper, unless otherwise specified, is that the trial began on 1st May 205 

2015 using a conservative working hypothesis of 50% reduction in susceptibility 206 

following prime vaccine, rising to hypothetical 80% after the boost vaccine. The 207 

populations of Kambia (population 340,000) and Port Loko (population 558,000) were 208 

smaller than the target of 400,000 participants in each arm, so we show simulations for 209 

those districts with each arm of the trial encompassing both – 170,000 in Kambia, and 210 

230,000 in Port Loko. Western Area had a large enough population that the trial could 211 

be conducted solely in that district. 212 

 213 

Effect of the start date of the trial 214 

For forecasts made on 15th February 2015 with trial start dates on 1st May, 1st June and 215 

1st July 2015, there were fewer cases in both arms when the start date was later (Figure 216 

3), due to the continued decline of the epidemic. The later the start date, the lower the 217 

probability that the epidemic was still on-going by the start of the trial. Although the 218 

trial begins on the first of each month, delays involved in the recruitment of participants, 219 

onset of protective immunity, and time to boost vaccination mean that cases occurring 220 

in the population are not necessarily trial endpoints, and therefore do not accrue in the 221 

cumulative cases shown in Figure 3. While the difference between vaccine and control 222 

arms could have been large by December 2015, the probability of the epidemic 223 

persisting until December was very low. We found the overall number of cases was 224 

larger if the trial was in Kambia and Port Loko combined, compared to Western Area 225 

solely.   226 

 227 

The occurrence of a vaccine trial in a candidate region would affect the persistence 228 

probability of the epidemic in that region if the vaccine were efficacious. In a declining 229 

epidemic, this would cause the epidemic to go extinct faster, reducing the persistence 230 



probability. This can be seen from Figure 3, as starting the trial earlier increased the 231 

probability of earlier elimination in the vaccine arms.   232 

 233 

Starting the trial later would result in a reduced probability of detecting a difference in 234 

the number of cases between the two arms and an increased probability of having no 235 

cases in either arm (Figure 4). In some simulations more cases would be observed in the 236 

control group in comparison to the vaccinated group (a“negative” effect). Figure 4 237 

indicates that over 5000 replicates of the trial, the distribution of the total number of 238 

cases is always significantly different between the vaccine and control arms at all 239 

starting time (p < 0.05, Wilcoxon signed rank test). However, when considering the 240 

proportion of trials with a positive or negative effect (i.e. below or above the diagonal in 241 

Fig 4), these proportions decrease and become more similar as the trial start later, with 242 

the proportion of trials with no cases increasing in the same time. While a split in favour 243 

of the vaccinated group would be expected under the assumed prime/boost effect, the 244 

simulations indicate that for a trial starting on 1st May, a negative (versus positive) effect 245 

would be observed in respectively 18% vs. 55%, 12% vs. 32% and 11% vs. 38% of 246 

simulations in Kambia, Port Loko and Western Area. For a trial starting 1st July 2015 the 247 

difference became smaller with 13% vs 15%, 4% vs 5% and 3% vs 4% of simulations for 248 

the three districts, respectively. The probability of observing no cases in either arm 249 

increased when the trial started later due to increasing stochastic extinctions 250 

(supplementary information). 251 

 252 

Effect of vaccine efficacy 253 

In simulations of this large trial, which is started in the declining phase of the epidemic, 254 

any effective vaccine causes a decrease in persistence probability of the epidemic 255 

(Figure 5). Higher hypothetical vaccine efficacy leads to quicker extinction of the 256 

epidemic, although the differences are very small. The simulations gave very 257 

comparable expected number of cases in the vaccine arm between the hypothetical 258 

vaccine efficacy values of 60%, 80% and 90%, which is shown by the grey, red, and 259 

yellow boxplots (Figure 5). This finding was consistent for Kambia, Port Loko and 260 

Western Area.  261 

 262 

Real-time updates 263 

The epidemic progressed from February to May 2015, and we updated the model fits 264 

and projections in real time. Here we display updated results as of 26th April 2015 265 



(Figure 6). The persistence probability of the epidemic in the potential study areas 266 

changed as incidence in those areas decreased and the model was fitted to more 267 

available data. There was a sharp decrease in persistence probability for Port Loko, due 268 

to the decline in the epidemic occurring there. In contrast, for Kambia and Western 269 

Area, the projections from February changed very little by April. 270 

 271 

 272 

Discussion 273 

This close collaboration between CMMID and Janssen R&D in forecasting and planning a 274 

phase 3 Ebola vaccine trial had many key benefits: firstly, the production of up-to-date 275 

epidemic projections gave better situational awareness to the clinical study team and 276 

key decision makers at Janssen. These forecasts were based on fitting a mechanistic 277 

transmission model to the current epidemiological data, thereby providing rigorous and 278 

realistic predictions. Secondly, the mechanistic model provided a means by which to 279 

assess the feasibility of the phase 3 effectiveness trial, and how this changed through 280 

time. This is critical to trial planning, determining whether to proceed, and to 281 

understanding the effect of logistical delays or constraints on feasibility. And thirdly, by 282 

fitting mechanistic models to potential study regions individually, the forecasts provided 283 

a better understanding of the variability between candidate sites and the impact that a 284 

trial might have had on the epidemic. This allowed study team and decision makers to 285 

assess the relative probability of trial success based on geographically specific 286 

information.  287 

 288 

Other trials planned for Ebola vaccines in various parts of West Africa faced challenges 289 

to feasibility as a result of the declining incidence [5,12]. In this study, modelling was 290 

used to help gauge the feasibility of the cluster-randomised design, by forecasting 291 

incidence in potential regions, which was then used in power calculations [9]. The 292 

dynamic transmission model could account for both vaccine efficacy in those vaccinated 293 

as well as vaccine effectiveness in the population. Trial simulations indicated how many 294 

cases to expect in the vaccine and control arms for various trial locations, start dates and 295 

hypotheses of vaccine efficacy and how this changed over time.  The trial simulations 296 

thus guided decisions of trial location and feasibility. For example, the simulations 297 

indicated that Kambia was more likely to have sustained transmission compared to 298 

Western Area and Port Loko. Further, the rapid decrease of the persistence probability 299 

over time urged the vaccine development team at Janssen to explore alternative trial 300 

designs, and, partly as a result of this work, it was decided to abandon the effectiveness 301 



trial protocol as planned. Instead, a safety and immunogenicity study was initiated in 302 

Kambia in October 2015. 303 

 304 

The trial was intended to start during the declining phase of the outbreak and the 305 

assumption on potential start dates reflects realistic assumptions about operational 306 

timing. Additional work could explore the feasibility of the trial starting at earlier points 307 

of the outbreak. Importantly, this work was performed using conservative estimates of 308 

vaccine efficacy after prime and boost vaccination, which were used to calculate power 309 

of the effectiveness trial. The effect of different assumptions of potential effect of prime 310 

and boost vaccinations could be reassessed, also taking into account durability of 311 

protection as suggested by recent immunogenicity data in  humans highlighting a strong 312 

and sustained immune response [13]. Future work could also integrate formal testing of 313 

vaccine efficacy [9] in the dynamic transmission modelling framework, in a similar way 314 

as for an individually randomized trial [5]. 315 

 316 

Although the model was able to accurately forecast the incidence by district, a key 317 

limitation was that we could not model cluster-level randomization due to insufficient 318 

data at this scale. Also, although the model could suggest which was likely to be the most 319 

favourable setting for the trial from an epidemiological point of view, in reality, there 320 

may be logistical constraints such as local customs, staff availability, manufacturing 321 

capacity and storage, trials running in parallel, and other factors that would affect trial 322 

feasibility. The scenarios that we explored were considered realistic at the start of the 323 

collaboration. 324 

 325 

The model structure used here does not explicitly include different transmission 326 

mechanisms such as during unsafe burials [14,15]. Instead, we used a flexible, 327 

stochastic, transmission rate to capture the combined effect of these different 328 

transmission components. The precise contribution of different factors was likely to 329 

have changed over the course of the epidemic. For example, by November 2014, trained 330 

burial teams and a safe burial command centre were established in Kambia and Port 331 

Loko (having been previously established in Western Area) [16], so the risk of 332 

transmission due to unsafe practices was likely decreased by these interventions. 333 

However, the model was able to capture overall patterns of disease transmissions that 334 

occur as a result of changes in transmission routes. 335 

 336 



While the use of mechanistic transmission models in evaluating vaccination programs is 337 

well established, their use in trial design, planning, and analysis, is a relatively new and 338 

growing area of research [17]. Designing interventions to reduce influenza transmission 339 

gives different preferred trial designs whether the goal is achieving power or taking 340 

account of economic constraints [18,19]. Modelling has been used to propose new trials 341 

for HIV antiviral treatment in serodiscordant couples [20], and has been used 342 

specifically for vaccine trials for malaria [21,22], intestinal helminths [23], wildlife 343 

vaccines [24], and nasopharyngeal bacteria [25]. For Ebola vaccine trials, a semi-344 

mechanistic model developed during the epidemic addressed the feasibility of a 345 

proposed phase 3 trial in high risk individuals [12].  346 

 347 

Our collaboration represents a novel example of close collaboration between modellers 348 

and trial planners to guide the design of a phase 3 trial during an epidemic. We 349 

delivered up-to-the-minute projections for both the epidemic and trial feasibility from 350 

academic researchers to industry partners. This type of information is critical to trial 351 

planning and clinical development, and mathematical models of disease transmission 352 

should be integrated into trial design at the earliest possible stage. 353 

 354 
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Figure captions  389 
 390 
Figure 1. Model diagram. Susceptible people were recruited to the trial by entering either the vaccine 391 
(VS) or control (C1) arms. Two weeks after receiving the prime, vaccinated participants developed 392 
protective immunity (σp), and entered the compartment VP. On receipt of the boost vaccine, they 393 
enter VB, and immediately gain the target vaccine efficacy (σb). Control participants proceed from C1 394 
to C2 at the same rate as VS to VP to maintain comparability. Transitions have Erlang-distributed 395 
waiting periods with shape equal to 2, apart from S to E, I to J, and J to R, which are exponentially 396 
distributed as well as S to VS or C1, which are step-wise processes. 397 
 398 
Figure 2. Epidemic in Kambia, Port Loko, and Western Area, Sierra Leone. Upper panels: Time points 399 
marked by dotted lines correspond with simulated trial start dates; 1

st
 May 2015, 1

st
 June 2015, and 400 

1
st

 of July 2015. Filled red circles are weekly EVD cases to which the model was fitted (blue line, with 401 
dark shaded region showing 50% credible interval and light region showing 95% interval) and empty 402 
circles displays data after that date (not fitted). Grey areas show forward-simulations of possible 403 
epidemic trajectories generated by the model, conditioned on extinction by 1

 
January 2016. Middle 404 

panels: Projections of the weekly number of reported cases rescaled to per 400,000 subjects. 405 
Horizontal dashed blue lines correspond to the static model incidence assumptions in [9], of 3, 5, 10, 406 
20, and 40 reported cases per 400,000 person-months. Lower panels: persistence probability in each 407 
area. 408 
 409 
Figure 3. Effect of start date on number of cases in vaccine and control arms, and persistence 410 
probability in each region, stratified by start date of the trial, for the baseline scenario. Cumulative 411 
cases are only shown for trajectories that persist until that month. Where no boxplot is shown, all 412 
trajectories were extinct by that month.  413 
 414 
Figure 4. Distribution of total cases observed in each arm of the trial, stratified by start date, for the 415 
baseline scenario. Note that the colour scale (which indicates the number of simulations) is 416 



logarithmic. In simulations above the diagonal, more cases occurred in the vaccine arm. The p-values 417 
are from a one-sided Wilcoxon signed rank test for fewer cases in the vaccine arm. There is one 418 
simulated point not shown, where the number of cases in the control arm is 100, and in the vaccine 419 
arm is 93, which occurred in Port Loko.  420 
 421 
Figure 5. Effect of vaccine efficacy on number of cases in vaccine and control arms and persistence 422 
probability, for a trial starting on 1

st
 May 2015. Forecasts start on 15

th
 February 2015. Cumulative 423 

cases are only shown for trajectories that persist until that month. When no boxplot is shown, this 424 
indicates that all trajectories were extinct by that month. 425 
 426 
Figure 6. Updated estimates of persistence probability on 15

th
 February, and 26

th
 April 2015 in each 427 

potential trial region. Figures show simulated trial under the baseline scenario. 428 
 429 
 430 

 431 
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