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ABSTRACT
Objectives: We investigate the chance of
demonstrating Ebola vaccine efficacy in an individually
randomised controlled trial implemented in the
declining epidemic of Forécariah prefecture, Guinea.
Methods: We extend a previously published dynamic
transmission model to include a simulated individually
randomised controlled trial of 100 000 participants.
Using Bayesian methods, we fit the model to Ebola
case incidence before a trial and forecast the expected
dynamics until disease elimination. We simulate trials
under these forecasts and test potential start dates and
rollout schemes to assess power to detect efficacy, and
bias in vaccine efficacy estimates that may be
introduced.
Results: Under realistic assumptions, we found that a
trial of 100 000 participants starting after 1 August had
less than 5% chance of having enough cases to detect
vaccine efficacy. In particular, gradual recruitment
precludes detection of vaccine efficacy because the
epidemic is likely to go extinct before enough
participants are recruited. Exclusion of early cases in
either arm of the trial creates bias in vaccine efficacy
estimates.
Conclusions: The very low Ebola virus disease
incidence in Forécariah prefecture means any
individually randomised controlled trial implemented
there is unlikely to be successful, unless there is a
substantial increase in the number of cases.

INTRODUCTION
Since 2013, the largest epidemic of Ebola
virus disease (EVD) to date has been
ongoing in West Africa, with over 25 000
cases and 10 000 deaths reported as of 7 July
2015. There is no licensed vaccine or treat-
ment for EVD, and the case fatality rate is
around 70%.1 The epidemic has declined
since its peak, however disease incidence
remains low.2 As a result, it may be challen-
ging to run the phase III vaccine trials neces-
sary to assess the efficacy of candidate

vaccines that are currently in development,
and hence apply for licensure. As well as
existing study designs being proposed, such
as individually randomised controlled trials
(RCTs) and stepped wedge trials,3 the declin-
ing incidence of EVD has led to develop-
ment of novel vaccine trial designs4 to
account for the limited number of cases in
West Africa.
Some areas have continued transmission,

however, and thus remain potential candi-
date locations for a large-scale Ebola vaccine
trial.5 For example, trials have been pro-
posed in Guinea, where Forécariah prefec-
ture has seen continuing transmission since
October 2014. Conventional statistical power
analysis or sample size estimation using fixed
assumptions on incidence rates is inappropri-
ate when incidence rates change during the
course of an epidemic. Here we use a com-
bination of epidemic modelling and statis-
tical analysis to examine the chance of
success of such trials. Specifically, we estimate
the power of an RCT to detect vaccine
efficacy in the coming months under a range
of different scenarios. Unlike other
approaches,6 our method uses real-time fore-
casting to account for the possibility that the
epidemic will end during the trial, and incor-
porates this possibility into the evaluation of
trial success.

Strengths and limitations of this study

▪ Timely estimates of chance of success of indi-
vidually randomised controlled trials (RCTs) in
the declining Ebola epidemic.

▪ Determination and explanation of bias introduced
to vaccine RCTs by exclusion of cases that occur
shortly after vaccination.

▪ This model can only account for RCTs con-
ducted in the declining phase of the epidemic.
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METHODS
Model fitting and forecasting
To investigate the dynamics of EVD in the prefecture of
Forécariah (population 245 000), we fitted a stochastic
Susceptible-Exposed-Infectious-Recovered (SEIR) trans-
mission model to the weekly incidence of confirmed
and probable cases published by the WHO7 and
Guinean Ministry of Health between 1 August 2014 and
7 June 2015.2 A description of parameters is given in
table 1.
We used published estimates of 9.4 days for the mean

latent period and 11.8 days for the mean infectious
period.1 To account for external influences on the
reproduction number (Rt), for example, variation in
population behaviour, or epidemic control measures, we
assumed that the transmission rate could change over
time. Therefore, the change in βt would also absorb any
effective change in the infectious period during the epi-
demic. The extent and direction of rate change was esti-
mated during the model-fitting procedure.8 We used the
same Bayesian inference framework as in.9 Briefly, we
defined the likelihood of the data through a negative
binomial observation process accounting for over-
dispersion in the reporting of cases (the mean reporting
rate was fixed at 60% and the dispersion parameter was
inferred). Then, we used a particle Monte-Carlo Markov
Chain10 algorithm implemented in the SSM library11 to
sample from the marginal posterior distribution of the
parameters and the states of the model.
After fitting the transmission parameters of the

model, we projected the model forward in time, to simu-
late the potential future trajectories of the epidemic.
More precisely, we simulated 200 000 epidemic trajector-
ies without a vaccine trial from 7 June 2015 until 1 May
2016. This corresponds to 40 stochastic simulations of
5000 samples from the posterior distribution of the para-
meters and model states inferred on 7 June 2015. We
restricted the forecast to those parameter sets for which
more than 25% of the 40 simulated epidemics go
extinct before 1 May 2016, that is, assuming that elimin-
ation of EVD will be achieved within 10 months. We kept

3542 (71%) of the 5000 parameter sets. Epidemic trajec-
tories resulting from these parameter sets are sum-
marised in figure 1A, and the distribution of Rt for
forecasted epidemics is shown in figure 1B, C. In par-
ticular, we note that all forecasts have Rt below the epi-
demic control threshold, that is, we assume that the
epidemic will remain under control until elimination.
This is a reasonable assumption, given the low incidence
in Forécariah.

Trial implementation
To model the vaccine trial, we extend the stochastic
SEIR transmission model to include the recruitment of
two arms of an individually randomised controlled
trial12 for an EVD vaccine (figure 1D).
In the model, the vaccine is delivered in one dose,

and protective immunity begins 2 weeks later. We also
conducted a sensitivity analysis by using 1 week delay,
based on the intermediate results of the rVSV ring-
vaccination trial in Guinea.13 Immunity lasts 1 year and
has efficacy of assumed values 0%, 50%, 70% or 90%.
Each arm of the modelled trial has 50 000 participants,
and we test three potential start dates: 1 July, 1 August
and 1 September 2015, and we also test two modes of
recruitment; immediate, where 100 000 individuals are
recruited in the first 2 weeks of the trial and gradual,
where 10 000 individuals are recruited during the first
2 weeks of each month, for 10 months. The gradual
recruitment scenario is more realistic because of the
delays inherent in recruiting and vaccinating people,
however we present the immediate recruitment scenario
as an example of the ideal implementation.

Analysis of trial outcomes
In a primary analysis of a randomised controlled vaccine
trial, the vaccine efficacy, ŝt, at time t is measured by:

ŝt ¼ 1

� cases in vaccinated group=number in vaccinated group
cases in control group=number in control group

where the vaccinated and control groups are defined in
the trial protocol (see below), and 95% CIs are com-
puted as score CIs.14 These standard vaccine efficacy cal-
culations assume that the risk of infection is constant
through time in both arms, which is violated when an
epidemic is declining. Forécariah has seen unstable
declining incidence since mid-March 2015 (figure 1A),
which has two implications for a trial in this area; (1)
the false-positive rate (type I error) may be different
than the expected 5%, and, (2) the trial may be under-
powered if the epidemic goes extinct before enough
events have occurred (type II error).
For each trial simulation, we computed ŝt each week

until the simulated epidemic went extinct. A positive
(negative) effect is defined if the lower (upper) bound
of the CI is strictly positive (negative). We then derived:

Table 1 Parameter descriptions and values

Parameter Description Value

βt Time varying transmission

rate

Estimated

1/ɛ Average latent period 9.4 days1

1/ν Average infectious period 11.8 days1

Rt Time-varying reproduction

number

βt/ν

1/κ Average time between

vaccination and protection

14 days

1/γ Average duration of vaccine

protection

1 year

σ Vaccine efficacy 0%, 50%,

70%, 90%

2 Camacho A, et al. BMJ Open 2015;5:e009346. doi:10.1136/bmjopen-2015-009346

Open Access

group.bmj.com on December 17, 2015 - Published by http://bmjopen.bmj.com/Downloaded from 

http://bmjopen.bmj.com/
http://group.bmj.com


A. Extinction probability—the probability that the epi-
demic has gone extinct by time t, which is the pro-
portion of extinct simulations at time t.

B. Measured vaccine efficacy—the median value of ŝt

in simulations where the epidemic is non-extinct at
time t and at least one case occurred in either the
control or intervention arms (otherwise ŝt is not
defined).

C. False-positive rate—the probability that a positive or
negative vaccine effect can be detected, given that
the vaccine has no efficacy and the epidemic is non-
extinct at that time. Calculated as the proportion of
simulations with a positive or negative vaccine effi-
cacy when true efficacy is 0%, and the epidemic is
non-extinct at t.

D. Power to detect vaccine efficacy—the probability that
a positive vaccine effect can be detected given that the

vaccine is efficacious and the epidemic is non-extinct.
We use the proportion of simulations with a positive
effect among the non-extinct simulations at time t.

E. Power adjusted by extinction probability—the prob-
ability that the epidemic is non-extinct and vaccine
efficacy is detected. The power at time t is multiplied
by 1-extinction probability at time t, and this there-
fore represents the chance of success of the trial.

Definition of the vaccine and control groups
Some trial protocols exclude participants who develop
symptoms shortly after vaccination, that is, before the
vaccine becomes immunoprotective, under the assumption
that the participant became infected before recruitment or
before the vaccine could generate an immune response in
the host. Other trial protocols also exclude control partici-
pants who develop symptoms within this period,12 under

Figure 1 Model fit (blue) to the incidence data in Forécariah (red points) and forecast (grey) based on the posterior distribution

at the latest data point (A). The solid line corresponds to the median estimate and the shaded areas to the 50% and 95%

credible intervals. Fitted (blue) and forecasted (grey) values for the time-varying reproduction number Rt (B). Posterior distribution

of Rt on 7 June 2015 (blue) and distribution corresponding to the trajectories used for forecasting (grey)(C). Mechanistic model

for the vaccine trial (D). Susceptible participants are recruited into the trial at rate, rt. Before the trial begins, rt equals zero, and

the model reduces to an SEIR model. Those entering the vaccine arm pass through a period of immune development, Vs, during

which they are susceptible to Ebola virus disease infection. Following onset of protective immunity, they enter Vp and experience

reduced susceptibility, σ, equal to the vaccine efficacy. Protective immunity is lost at rate γ, and individuals become susceptible

again. Participants enter the control arm at the same rate as vaccinated participants and are separated between early (C1) and

late (C2) control to match the delay in acquiring immunity in the vaccine arm. For biological realism, the distribution of durations of

E, Vs and Vp follow an Erlang distribution with shape parameter two. Similarly, to match the vaccine arm, the same distribution is

assumed for the compartment C1.
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similar assumptions about exposure time. We test the effect
of excluding participants in each arm who are infected
within 2 weeks of recruitment. We distinguish three defini-
tions of the vaccinated or control groups depending on
which participants are excluded: (1) no early cases
excluded, (2) only early cases in the vaccine arm are
excluded, (3) early cases in both arms are excluded.

RESULTS
Detection of vaccine efficacy
For each vaccine efficacy tested, the extinction probabil-
ity quickly increases through time, with more than 50%

chance of extinction by October 2015 (figure 2A).
Power is positively correlated with vaccine efficacy
(figure 2B). The power to detect vaccine efficacy at a
given time depends on the probability that the epidemic
has not gone extinct by that time, which is also influ-
enced by the true vaccine efficacy (σ), due to
population-level immunity caused by the vaccine trial.
Figure 2C shows that there is low power to detect effi-
cacy when adjusted by the extinction probability.

Effect of vaccine or control group definition
For a model with immediate recruitment on 1 July, and
70% vaccine efficacy, the highest power is achieved by

Figure 2 Detection of vaccine

efficacy for a trial starting on 1

July with immediate vaccination.

Extinction probability (A), power

to detect efficacy (B) and power

to detect efficacy adjusted by

extinction probability (C), for

assumed efficacy values 50, 70

and 90%.

Figure 3 Effect of group definition on trial outcomes. The X-axis shows the probability that the epidemic goes extinct before the

value on the Y-axis is reached. Advancing time moves left-to-right, as the extinction probability increases. Power to detect

efficacy (A), false-positive rate (B), and measured vaccine efficacy (where 70% is assumed) (C). The three group definitions (1)

no early cases excluded (blue), (2) early cases in the vaccine arm excluded (black), and (3) cases in both arms excluded (red).
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excluding only early cases in the vaccine arm (figure
3A). However, this cohort definition is also associated
with an inflated type I error (figure 3B) and overesti-
mates the true vaccine efficacy (figure 3C). Excluded
cases have a higher risk of infection because the force of
infection decreases over time. Since early cases in the
control arm that were at the same high risk are not
excluded, bias is introduced.
Including all cases reduces the false-positive rate below

5% but also decreases the trial power, and leads to
underestimates of vaccine efficacy (figure 3C).
Excluding early cases in vaccinated and control arms
maintains the false-positive rate below 5%, does not bias
vaccine efficacy downward and maintains moderate
power. In all cases, there is high probability that the epi-
demic goes extinct before vaccine efficacy can be accur-
ately measured. These results are generalisable to other
vaccine efficacies and start dates.
In practice, it may be difficult to find the appropriate

exclusion period, where the period over which immunity
is developed is unknown. Reducing both the protection
delay and exclusion period from 2 to 1 week leads only
to a slightly earlier and higher peak in power due to
greater sample sizes and number of cases included in
the analysis. In addition, shorter delay increases herd
immunity effect, leads to faster extinction of the epi-
demic and thus reduces the adjusted power at later time
(figure 4).

Realistic rollout scenarios
Under an ideal scenario of immediate recruitment of
100 000 participants, the later the trial starts the lower
the probability to detect vaccine efficacy (figure 4). The

effect of delaying the start of the trial by 1 month halves
the chance of success. Gradual enrolment of partici-
pants drastically reduces the power to detect efficacy
compared with immediate rollout. The example shown
is 1 July start date although other start dates show the
same pattern, with greatly reduced power. This occurs
because there is a high probability of extinction before
enough participants are recruited.

DISCUSSION
Here we modelled the implementation of an individu-
ally randomised control vaccine trial in Forécariah pre-
fecture, Guinea using an extended version of a
previously published dynamic transmission model for
EVD. We showed that if an RCT were to start later this
year in Forécariah prefecture it would have a very
limited chance of detecting any vaccine efficacy, because
the epidemic is likely to go extinct before enough cases
have occurred in participants. In addition, in realistic
rollout scenarios of 10 000 participants per month, the
chance that the epidemic persists until enough partici-
pants are recruited and the trial is able to detect efficacy
is very low, for example, below 2% for a trial beginning
on 1 July 2015 with a 70% efficacious vaccine. We note
that this adjusted power is probably an overestimate
since our model operates at the population level and
does not account for clustering effect at small scales.
We also demonstrated that exclusion of early cases in

the group definition for the vaccine arm of a trial (ie,
individuals vaccinated but not yet protected) inflates the
power but also the false-positive rate due to the declining
risk of infection over time. Ideally, the group definition
for a primary analysis in a declining epidemic should con-
sider excluding early cases in the control and interven-
tion arms to maximise the power to detect vaccine
efficacy while keeping the false-positive rate below 5%.
Alternatively, more advanced statistical analyses account-
ing for time-varying risk of infection should be consid-
ered to circumvent the necessity of excluding early
control cases.6 This important bias must be accounted for
in protocols of infectious disease vaccine trials.
Overall, our analysis is an example of how real-time

mathematical models can be used to design trials more
efficiently during an epidemic, and assess feasibility of
planned trials, although models are infrequently utilised
to this end. More realistic models accounting for
network structure could be even more precise given that
the majority of transmission events may be seen in clus-
ters formed at confined space (eg, hospital or house-
hold) and also at a small spatial scale.

Acknowledgements The authors acknowledge funding from the Research for
Health in Humanitarian Crises (R2HC) Programme, managed by Research for
Humanitarian Assistance (Grant 13165) (AC, SF, AJK), the Innovative
Medicines Initiative 2 (IMI2) Joint Undertaking, under grant agreement
115854 (RME, WJE) and UK Medical Research Council grant MR/J003999/1
(CHW). IMI2 receives support from the European Union’s Horizon 2020
research and innovation programme and the European Federation of

Figure 4 Effect of start date on trial success. The figure

shows immediate administration of a 70% efficacious vaccine

to all participants (round points) for trials starting on the 1

July, 1 August and 1 September. In addition, the gradual

recruitment of participants (triangles) is shown for the 1 July

start date. The dashed line shows the power when the

assumed delay from administration of vaccine until protective

immunity is 1 week. All other results are for a 2-week delay.

Camacho A, et al. BMJ Open 2015;5:e009346. doi:10.1136/bmjopen-2015-009346 5

Open Access

group.bmj.com on December 17, 2015 - Published by http://bmjopen.bmj.com/Downloaded from 

http://bmjopen.bmj.com/
http://group.bmj.com


Pharmaceutical Industries and Associations (EFPIA). The authors also thank
Stefan Flasche and John Ojal for helpful technical discussion.

Collaborators Stefan Flasche; John Ojal.

Contributors AC, RME, SF, CHW, AJK and WJE developed the model. AC
implemented the analysis. AC, RME, SF and WJE interpreted the results. AC
and RME wrote the first draft. All authors contributed to the final version of
the manuscript.

Funding Research for Health in Humanitarian Crises Programme from
Research for Health in Humanitarian Crises (Grant 13165). Innovative
Medicines Initiative 2 Joint Undertaking (grant agreement 115854). Medical
Research Council (grant MR/J003999/1).

Competing interests AC, WJE and CHW are co-investigators on the Ebola ça
suffit ring vaccination trial in Guinea, have acted as unpaid advisors to the
WHO on Ebola vaccination and report travel and accommodation paid for by
the WHO to attend meetings. WJE is a co-investigator on, and RME is funded
by, the European Commission Innovative Medicines Initiative-funded EBOVAC
trial of the Johnson & Johnson prime-boost Ebola vaccine candidate. WJE’s
partner is an epidemiologist at GlaxoSmithKline, in a role unrelated to the
company’s development of an Ebola vaccine. AC and CHW have acted as
unpaid advisors to the EBOVAC trial, for which CHW reports travel and
accommodation paid for by the EBOVAC consortium to attend a meeting.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement No additional data are available.

Open Access This is an Open Access article distributed in accordance with
the terms of the Creative Commons Attribution (CC BY 4.0) license, which
permits others to distribute, remix, adapt and build upon this work, for
commercial use, provided the original work is properly cited. See: http://
creativecommons.org/licenses/by/4.0/

REFERENCES
1. Agua-Agum J, Ariyarajah A, Aylward B, et al., WHO Ebola

Response Team. West African Ebola epidemic after one year—
slowing but not yet under control. N Engl J Med 2015;372:584–7.

2. Centre for the Mathematical Modelling of Infectious Diseases.
Visualisation and projections of the Ebola outbreak in West Africa.
London Sch. Hyg. Trop. Med. http://ntncmch.github.io/ebola/
(accessed 7 Jun 2015).

3. Piszczek J, Partlow E. Stepped-wedge trial design to evaluate Ebola
treatments. Lancet Infect Dis 2015;15:762–3.

4. Ebola ça suffit ring vaccination trial consortium. The ring vaccination
trial: a novel cluster randomized controlled trial design to evaluate
vaccine efficacy and effectiveness during outbreaks, with special
reference to Ebola. BMJ 2015;351:h3740.

5. Kupferschmidt K. Scientists argue over access to remaining Ebola
hotspots. Science. http://news.sciencemag.org/africa/2015/03/
scientists-argue-over-access-remaining-ebola-hotspots?
intcmp=collection-ebola

6. Bellan SE, Pulliam JR, Pearson CA, et al. Statistical power and
validity of Ebola vaccine trials in Sierra Leone: a simulation
study of trial design and analysis. Lancet Infect Dis 2015;15:
703–10.

7. World Health Organisation. Ebola Situation Reports. http://apps.who.
int/ebola/ebola-situation-reports (accessed 7 Jun 2015).

8. Dureau J, Kalogeropoulos K, Baguelin M. Capturing the time-varying
drivers of an epidemic using stochastic dynamical systems.
Biostatistics 2013;14:541–55.

9. Camacho A, Kucharski A, Aki-Sawyerr Y, et al. Temporal
changes in Ebola transmission in Sierra Leone and implications for
control requirements: a Real-time Modelling Study. PLoS Curr
2015;7.

10. Andrieu C, Doucet A, Holenstein R. Particle Markov chain Monte
Carlo methods. J Roy Stat Soc B 2010;72:269–342.

11. Dureau J, Ballesteros S, Bogich T. SSM: Inference for time series
analysis with State Space Models. arXiv.org. 2013. http://arxiv.org/
abs/1307.5626

12. Halloran ME, Longini IM Jr, Struchiner CJ. Design and analysis of
vaccine studies. New York, NY: Springer New York, 2010.

13. Henao-Restrepo AM, Longini IM, Egger M, et al. Efficacy and
effectiveness of an rVSV-vectored vaccine expressing
Ebola surface glycoprotein: interim results from the
Guinea ring vaccination cluster-randomised trial. Lancet
2015;386:857–66.

14. Scherer R. R package PropCIs version 0.2-5. riskscoreci score
confidence interval for the rela. 2014. http://cran.r-project.org/web/
packages/PropCIs/index.html

6 Camacho A, et al. BMJ Open 2015;5:e009346. doi:10.1136/bmjopen-2015-009346

Open Access

group.bmj.com on December 17, 2015 - Published by http://bmjopen.bmj.com/Downloaded from 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1056/NEJMc1414992
http://ntncmch.github.io/ebola/
http://dx.doi.org/10.1016/S1473-3099(15)00078-X
http://news.sciencemag.org/africa/2015/03/scientists-argue-over-access-remaining-ebola-hotspots?intcmp=collection-ebola
http://news.sciencemag.org/africa/2015/03/scientists-argue-over-access-remaining-ebola-hotspots?intcmp=collection-ebola
http://news.sciencemag.org/africa/2015/03/scientists-argue-over-access-remaining-ebola-hotspots?intcmp=collection-ebola
http://news.sciencemag.org/africa/2015/03/scientists-argue-over-access-remaining-ebola-hotspots?intcmp=collection-ebola
http://news.sciencemag.org/africa/2015/03/scientists-argue-over-access-remaining-ebola-hotspots?intcmp=collection-ebola
http://news.sciencemag.org/africa/2015/03/scientists-argue-over-access-remaining-ebola-hotspots?intcmp=collection-ebola
http://news.sciencemag.org/africa/2015/03/scientists-argue-over-access-remaining-ebola-hotspots?intcmp=collection-ebola
http://news.sciencemag.org/africa/2015/03/scientists-argue-over-access-remaining-ebola-hotspots?intcmp=collection-ebola
http://news.sciencemag.org/africa/2015/03/scientists-argue-over-access-remaining-ebola-hotspots?intcmp=collection-ebola
http://news.sciencemag.org/africa/2015/03/scientists-argue-over-access-remaining-ebola-hotspots?intcmp=collection-ebola
http://dx.doi.org/10.1016/S1473-3099(15)70139-8
http://apps.who.int/ebola/ebola-situation-reports
http://apps.who.int/ebola/ebola-situation-reports
http://apps.who.int/ebola/ebola-situation-reports
http://apps.who.int/ebola/ebola-situation-reports
http://dx.doi.org/10.1093/biostatistics/kxs052
http://dx.doi.org/10.1371/currents.outbreaks.406ae55e83ec0b5193e30856b9235ed2
http://dx.doi.org/10.1111/j.1467-9868.2009.00736.x
http://arxiv.org/abs/1307.5626
http://arxiv.org/abs/1307.5626
http://dx.doi.org/10.1016/S0140-6736(15)61117-5
http://cran.r-project.org/web/packages/PropCIs/index.html
http://cran.r-project.org/web/packages/PropCIs/index.html
http://cran.r-project.org/web/packages/PropCIs/index.html
http://bmjopen.bmj.com/
http://group.bmj.com


epidemic: a Bayesian modelling approach
vaccine efficacy in the declining Ebola 
Estimating the probability of demonstrating

Adam J Kucharski and W John Edmunds
Anton Camacho, Rosalind M Eggo, Sebastian Funk, Conall H Watson,

doi: 10.1136/bmjopen-2015-009346
2015 5: BMJ Open 

 http://bmjopen.bmj.com/content/5/12/e009346
Updated information and services can be found at: 

These include:

References
 #BIBLhttp://bmjopen.bmj.com/content/5/12/e009346

This article cites 7 articles, 2 of which you can access for free at: 

Open Access

http://creativecommons.org/licenses/by/4.0/
use, provided the original work is properly cited. See: 
others to distribute, remix, adapt and build upon this work, for commercial
the Creative Commons Attribution (CC BY 4.0) license, which permits 
This is an Open Access article distributed in accordance with the terms of

service
Email alerting

box at the top right corner of the online article. 
Receive free email alerts when new articles cite this article. Sign up in the

Collections
Topic Articles on similar topics can be found in the following collections 

 (347)Research methods
 (1283)Public health

 (352)Infectious diseases
 (260)Global health
 (1282)Epidemiology

Notes

http://group.bmj.com/group/rights-licensing/permissions
To request permissions go to:

http://journals.bmj.com/cgi/reprintform
To order reprints go to:

http://group.bmj.com/subscribe/
To subscribe to BMJ go to:

group.bmj.com on December 17, 2015 - Published by http://bmjopen.bmj.com/Downloaded from 

http://bmjopen.bmj.com/content/5/12/e009346
http://bmjopen.bmj.com/content/5/12/e009346#BIBL
http://creativecommons.org/licenses/by/4.0/
http://bmjopen.bmj.com//cgi/collection/bmj_open_epidemiology
http://bmjopen.bmj.com//cgi/collection/bmj_open_global_health
http://bmjopen.bmj.com//cgi/collection/bmj_open_infectious_diseases
http://bmjopen.bmj.com//cgi/collection/bmj_open_public_health
http://bmjopen.bmj.com//cgi/collection/bmj_open_research_methods
http://group.bmj.com/group/rights-licensing/permissions
http://journals.bmj.com/cgi/reprintform
http://group.bmj.com/subscribe/
http://bmjopen.bmj.com/
http://group.bmj.com

	Estimating the probability of demonstrating vaccine efficacy in the declining Ebola epidemic: a Bayesian modelling approach
	Abstract
	Introduction
	Methods
	Model fitting and forecasting
	Trial implementation
	Analysis of trial outcomes
	Definition of the vaccine and control groups

	Results
	Detection of vaccine efficacy
	Effect of vaccine or control group definition
	Realistic rollout scenarios

	Discussion
	References


