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Abstract

Outbreaks of Ebola virus can cause substantial morbidity and mortality in af-

fected regions. The largest outbreak of Ebola to date is currently underway in

West Africa, with 3,944 cases reported as of 5th September 2014. To develop a

better understanding of Ebola transmission dynamics, we revisited data from the

first known Ebola outbreak, which occurred in 1976 in Zaire (now Democratic

Republic of Congo). By fitting a mathematical model to time series stratified by

disease onset, outcome and source of infection, we were able to estimate several

epidemiological quantities that have previously proved challenging to measure,

including the contribution of hospital and community infection to transmission.

We found evidence that transmission decreased considerably before the closure of

the hospital, suggesting that the decline of the outbreak was most likely the result

of changes in host behaviour. Our analysis suggests that the person-to-person re-

production number was 1.34 (95% CI: 0.92–2.11) in the early part of the outbreak.

Using stochastic simulations we demonstrate that the same epidemiological con-

ditions that were present in 1976 could have generated a large outbreak purely by

∗Corresponding authors. These authors contributed equally to the work.
Email addresses: anton.camacho@lshtm.ac.uk (A. Camacho),

adam.kucharski@lshtm.ac.uk (A. J. Kucharski)

Preprint submitted to Epidemics October 6, 2014



chance. At the same time, the relatively high person-to-person basic reproduction

number suggests that Ebola would have been difficult to control through hospital-

based infection control measures alone.

Keywords: Ebola, 1976 Zaire outbreak, mathematical model, basic reproduction

number

Introduction1

There have been more than twenty-five known outbreaks of Ebola virus dis-2

ease in Africa since the disease was first identified in Zaire (now Democratic Re-3

public of Congo) in 1976 (Centers for Disease Control and Prevention, 2014).4

Five ebolavirus strains have been identified in total, the most virulent of which5

appears to be the Ebola Zaire variant (EBOV); it was responsible for over a dozen6

outbreaks between 1976–2008, with overall case fatality rate of 79% (95% CI:7

0.76–0.81) (Centers for Disease Control and Prevention, 2014; Breman et al.,8

1978; Formenty et al., 2003; Georges et al., 1999; Heymann et al., 1980; Khan9

et al., 1999; Leroy et al., 2004; Nkoghe et al., 2011; Pattyn, 1978; Report of an10

International Commission, 1978). Transmission occurs as a result of direct con-11

tact with the body fluids of infected individuals, and is unlikely to occur during12

the incubation period (Breman et al., 1978; Dowell et al., 1999). In March 2014,13

a new outbreak of EBOV was identified in West Africa. Cases were reported first14

in Guinea (Baize et al., 2014), then in Liberia, Sierra Leone, Nigeria and Sene-15

gal. The outbreak is the largest to date: as of 5th September 2014, 3,944 cases16

have been reported by the World Health Organisation, and 1,759 deaths (World17

Health Organisation, 2014). Unlike previous outbreaks, which were centred on18

rural communities, infections have also been detected in large urban areas in 2014.19

It is therefore crucial to develop a better understanding of the transmission dynam-20
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ics of EBOV, and the implications it could have for control measures.21

There have been a number of modelling studies of Ebola, which have focused22

on two historical outbreaks (Table 1). For the 1995 outbreak in Democratic Re-23

public of Congo, estimates of the basic reproduction number have ranged from24

1.4 to 3.7 (Chowell et al., 2004; Ferrari et al., 2005; Legrand et al., 2007; Lekone25

and Finkenstädt, 2006; Ndanguza et al., 2013; White and Pagano, 2008); for the26

2000/1 outbreak in Uganda, estimates span 1.3 to 2.7 (Chowell et al., 2004; Fer-27

rari et al., 2005; Legrand et al., 2007; McKinley et al., 2009). These studies fitted28

models of varying complexity to time series with date of disease onset and/or29

death. However, in both outbreaks, hospital-based infection played a substan-30

tial role in transmission (Borchert et al., 2011; Khan et al., 1999; Francesconi31

et al., 2003). As the data were not stratified by likely source of infection, it was32

not possible to identify the relative contribution of different transmission routes33

to the reproduction number. It therefore remains unclear to what extent person-34

to-person transmission contributed to past Ebola outbreaks, and how community35

and hospital-specific control measures influenced the reproduction number in each36

setting.37

To gain further insights into the dynamics of Ebola, we revisited case data from38

the first known EBOV outbreak in 1976. These data included information on the39

likely source of infection, as well as date of onset and outcome. We used a trans-40

mission model to infer the basic reproduction number in different settings, and41

assessed the contribution of hospital and community infection to disease trans-42

mission. Having characterised the dynamics of EBOV, we used stochastic simula-43

tions to investigate alternative outcomes that could have been generated with the44

same epidemiological conditions present in 1976, and assessed the potential for a45

large outbreak of the disease. Finally, we discuss the implications of our results46

for other Ebola outbreaks.47
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Methods48

Data49

Between August and November 1976, there were 318 reported cases of Ebola50

in the Yandongi collectivity of Zaire, with 280 deaths. The outbreak was centred51

around the Yambuku Mission Hospital. With only five syringes issued each day,52

exposure to contaminated syringes and needles during routine outpatient visits53

was a common route of transmission; infected hosts then returned to their villages,54

and in some cases infected others in the community (Breman et al., 1978).55

In our analysis, we used a line list of 262 cases, taken from the original epi-56

demiological investigations (Breman et al., 1978; Report of an International Com-57

mission, 1978). The data (Supplementary File S1) reported: date of disease onset;58

outcome (death/recovery); date of outcome; and likely source of transmission (sy-59

ringe during outpatient visit/person-to-person transmission/both/other). The pro-60

gression of the outbreak is shown in Figure 1. Of the reported 262 cases, 25061

had a likely source of infection recorded and 8 dates of onset and outcome were62

missing (Table S1). We used the line list to compile four daily time series: on-63

set of disease following hospital infection via syringe (87 cases in total); onset of64

disease following person-to-person infection (140 cases in total); reported deaths65

(248 cases in total); and reported recoveries (11 cases in total).66

Model67

We used a compartmental model of infection to analyse the temporal dynam-68

ics of Ebola (Legrand et al., 2007). The model structure is outlined in Figure 2.69

We assumed that individuals start off susceptible to infection (S). Upon infection70

they enter an incubation period (E), then become symptomatic and infectious in71

the community (I). We therefore assume that the latent and incubation periods are72
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equivalent. After this point, they either: enter a recovered state (R); remain infec-73

tious and go into hospital (H); or die and remain infectious (D) until buried (B).74

Following hospitalisation, infectious hosts also move either into the recovered or75

dead compartment.76

We assumed susceptible hosts in the community could become infected in77

three different ways: person-to-person transmission from an infectious host in the78

community, at rate βi(t), or from a dead but not buried patient during a tradi-79

tional funeral ceremony, at rate βd(t); or hospital transmission via syringe during80

outpatient visits, at rate βh(t).81

There was evidence that hospital and person-to-person transmission declined82

over the course of the 1976 outbreak. Epidemiological reports note that the com-83

munity stopped coming to the outpatient department as they associated the epi-84

demic with the Yambuku Mission Hospital, which eventually was closed on 30th85

September. Also, as time went on the population became very suspicious and86

did not touch the corpses anymore, not even to bury them (Breman et al., 1978).87

We therefore used time-dependent smooth decreasing functions for βi(t), βd(t)88

and βh(t) (Chowell et al., 2004; Lekone and Finkenstädt, 2006; Ndanguza et al.,89

2013):90

βi(t) = βi
(
1− δppσ(t, αpp, τpp)

)
βd(t) = βd

(
1− δppσ(t, αpp, τpp)

)
βh(t) = βh

(
1− σ(t, αh, τh)

)
1t<Th

(1)

where 1t<Th is the indicator function and σ is the following sigmoid function:91

σ(t, α, τ) =
1

1 + exp
(
− α(t− τ)

) . (2)

As t grew large, we assumed that βi(t) and βd(t) approached values equal to a92

proportion δpp of their initial values. We also assumed that no further hospital93

transmission occurred after the hospital closed on 30 September (i.e. βd(t) = 0),94
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and that no new cases entered the H compartment after this point.95

Using our estimates of βi(0), βd(0) and βh(0), we were able to calculate the96

basic reproduction number, R0, defined as the average number of secondary cases97

produced by a typical infectious host at the onset of the outbreak (i.e., in a com-98

pletely susceptible population), see details in Text S3. At the start of the outbreak,99

the reproduction number, R(t), defined as the average number of secondary cases100

produced by a typical infectious host at time t, was equal to R0; as the outbreak101

progressed, R(t) could vary depending on the values of βi(t), βd(t) and βh(t), as102

well as through depletion of susceptibles.103

The full model was as follows (for brevity, the time dependencies of state104

variables are omitted):105

dS

dt
= −

(
βi(t)I + βh(t)H + βd(t)D

) S
N

dEpp
dt

=
(
βi(t)I + βd(t)D

) S
N
− εEpp

dEh
dt

= βh(t)H
S

N
− εEh

dI

dt
= ε(Epp + Eh)− Γi(t)I

dH

dt
= γhκi(t)I −

(
φhνd + (1− φh)νr

)
H

dD

dt
= γd

(
1− κi(t)

)
φiI + νdφhH − µbD

dR

dt
= γr

(
1− κi(t)

)
(1− φi)I + νr(1− φh)H

dB

dt
= µbD

(3)

Parameters are summarised in Table 2. We used flat priors for case-fatality ratio106

and transmission-related parameters. We also used additional epidemiological107

information not in our time series (Supplementary File S2; (Breman et al., 1978;108

Report of an International Commission, 1978; Khan et al., 1999; Nkoghe et al.,109

2011; Okware et al., 2002)) to inform strong prior distributions for: proportion110
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of cases reported; proportion of cases hospitalised; incubation period; time from111

onset to hospitalization, death and recovery. A strong prior centred around 24112

hours was used for the time from death to burial of individuals (Isaacson et al.,113

1978; Sureau et al., 1978). We fixed the initially susceptible population size at114

60,000, as this was the number of people for which the Yambuku Mission Hospital115

served as principal point of care (Report of an International Commission, 1978).116

We assumed that the index case was introduced in the H compartment at a time117

T0, which was also estimated. Indeed, the first reported case (25th August) was118

infected via a syringe and there is evidence that an unknown man came to the119

hospital with Ebola-like symptoms shortly before that date (Breman et al., 1978).120

As the model included multiple transitions between compartments, we needed121

to define certain parameters carefully. To ensure that the overall case-fatality ratio122

was equal to φ, we defined φi and φh as follows:123

φi =
φγr

φγr + (1− φ)γd

φh =
φνr

φνr + (1− φ)νd
.

(4)

Similarly, κi(t) was computed to ensure that the overall hospitalisation rate was124

equal to κ until hospital closure:125

κi(t) =
κ
(
γr(1− φi) + φiγd

)
κ
(
γr(1− φi) + φiγd

)
+ (1− κ)γh

1t<Th . (5)

Finally, Γi(t) denotes the total rate of exit from the I compartment:126

Γi(t) = γhκi(t) + γd
(
1− κi(t)

)
φi + γr

(
1− κi(t)

)
(1− φi), (6)

and νd and νr are the inverse of the mean time from hospitalisation to death and127

recovery respectively:128

νd =
γdγh
γh − γd

νr =
γrγh
γh − γr

.
(7)
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Inference129

To compare the model output with observed data, we calculated the incidences130

corresponding to the four time series on each day:131

∆Ipp(t) =

∫ t+1

t

εEppdt

∆Ih(t) =

∫ t+1

t

εEhdt

∆D(t) =

∫ t+1

t

(
γd
(
1− κi(t)

)
φiI + νdφhH

)
dt

∆R(t) =

∫ t+1

t

(
γr
(
1− κi(t)

)
(1− φi)I + νr(1− φh)H

)
dt

(8)

We assumed that onset (i.e. ∆Ipp(t),∆Ih(t)), death (∆D(t)) and recovery (∆R(t))132

data were reported according to Poisson processes with constant reporting rates133

ρonset, ρd and ρr respectively. We allowed for three potentially different reporting134

rates because i) not all cases had reported onsets; ii) 30 of the 262 were reported135

with both, other or unknown source of infection rather than person-to-person or136

syringe. These cases were therefore included in the outcome time series but not137

in the onset one; and iii) only 11 of 38 (29%) recovery cases versus 248 of 280138

(89%) death cases were reported.139

The probability of observing ypp(t) new onsets resulting from person-to-person140

transmission on day t, given parameter set θ (summarised in Table 2) was there-141

fore as follows:142

Lpp(ypp(t) | θ) =
[ρonset∆Ipp(t)]

ypp(t)e−ρonset∆Ipp(t)

ypp(t)!
. (9)

Similar expressions (Lh, LD and LR) were derived for the other incidence data143

and combined into the likelihood function:144

L(ypp, yh, yD, yR | θ) =
72∏
t=1

∏
k∈{pp,h,D,R}

Lk(yk(t) | θ) (10)
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We used a Bayesian framework to fit the model to all four time series simultane-145

ously and make inference on the parameter set θ. Given the likelihood function146

L and the chosen prior distribution of the parameters, the posterior distribution is147

known up to a normalising constant. Markov chain Monte Carlo methods con-148

struct Markov chains whose stationary distribution is the distribution of interest,149

when it cannot be directly simulated. We used the SSM library (Dureau et al.,150

2013), which implements an adaptive Metropolis-Hastings algorithm (Roberts151

and Rosenthal, 2009) to generate sequences of draws from the posterior distribu-152

tion of the parameters. We refer to Text S1 for more details. To test the accuracy153

of our inference framework, we fitted the model to observed data, generated a set154

of simulated time series from our fitted model, then estimated the parameters from155

the simulated data; our inference framework was able to recover the parameters156

in question (Text S2, Table S2 and Figures S2–S5).157

Results158

Our model was able to capture the dynamics of Ebola virus disease, including159

infections resulting from exposure to contaminated syringes and person-to-person160

transmission, and the timing of outcomes (Figure 3). By fitting to multiple time161

series, we were able to jointly estimate a number of key epidemiological param-162

eters (Table 2 and Figure S1). Using these estimates, we calculated the contribu-163

tion of person-to-person transmission (via infection from living and dead hosts in164

the community) and hospital-based transmission (via contaminated syringe) to the165

overall basic reproduction number, R0 (see Text S3). We found that the overallR0166

was 4.71 (95% CI: 3.92–5.66) at the onset of the epidemic. Most of this number167

was the result of hospital-based transmission, although we found evidence that the168

person-to-person basic reproduction number was potentially above 1 (Table 3).169

Person-to-person transmission was separated into two components in the model:170
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infections occurring while the case was alive and those occurring after death (i.e.171

before the patient had been buried). This meant fitting both transmission rates βi172

and βd. However, due to limited data on these specific transmission routes, the173

relative contribution to infection from living and dead patients in the community174

was not fully identifiable (see Text S1). When we fitted both transmission rates175

independently, the contributions from community and funeral cases to R0 were176

highly correlated (Figure S6). As it was not possible to identify the contribution177

from community and funeral infection to person-to-person transmission, we there-178

fore gathered the two measurements together into a single person-to-person basic179

reproduction number, denoted R0pp, which could be estimated from the available180

data.181

As the epidemic progressed, we found that the overall reproduction number182

decreased due to changes in the contact rate within the community and within183

the hospital. Splitting the overall reproduction number into its person-to-person184

and hospital components, we found that although hospital transmission was dom-185

inant during the early stages of the epidemic, it had dropped significantly by mid186

September (Figure 4). Our results suggest the hospital reproduction number Rh187

was below 1 well before the hospital closed on the 30 of September. Moreover,188

we found that hospital closure alone could not explain the observed data; when189

changes in person-to-person and hospital-based transmission were excluded, the190

model performed significantly worse (Table S3). We estimated that the drop in191

person-to-person transmission occurred later and less sharply than the reduction192

in exposure to contaminated syringes. However, the reduction in person-to-person193

transmission was still enough to drive the overall reproduction number below 1 by194

the end of September. Overall, these results are consistent with the observations195

reported by the epidemiological investigation team (Breman et al., 1978).196

To examine the possible range of dynamics for an outbreak with the same197
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characteristics as the one observed in the 1976 Yambuku outbreak, we ran 10,000198

stochastic simulations of our model under the maximum a posteriori probability199

estimates of the parameters (Figure 5). We found that although most simulated200

epidemics were of similar size to the one in 1976, major outbreaks could also oc-201

cur. Although only 2.6% of simulations resulted in a major outbreak (i.e. more202

than 1000 cases), the cumulated number of cases could reach up to several thou-203

sands in the worst-case scenario (Figure 6A). In the context of the 1976 epidemic,204

such a major outbreak could have arisen if – by chance – a sufficiently high num-205

ber of infections had occurred before the change of community contact and hos-206

pital seeking behaviours.207

To understand how different control measures could affect outbreak size, we208

also considered several alternative scenarios in our simulation study. First, we209

set the hospital closure date in the model to be 7 days after the onset date of the210

first case in the line list i.e. on 1st September rather than 30th. Although early211

closure resulted in fewer cases, with no outbreaks generating more than 1000212

cases, there were still occasionally outbreaks consisting of several hundred cases213

(Figure 6C). Next, we examined the effect of a smaller reduction in person-to-214

person transmission, assuming that the hospital reduction remained the same. We215

found that if the person-to-person transmission rate was reduced by 50% – rather216

than 98% as in our median estimates – transmission could persist longer in the217

community, and hence 28% of simulations resulted in an outbreak of at least 1000218

cases (Figure 6D). The number of reported cases in historical Ebola outbreaks has219

varied greatly, from a few infections to more than 3500 (Figure 6B); our results220

suggest that such variability might be expected given the transmission dynamics221

of Ebola.222

To explore the possibility of large outbreak occurring without the large contri-223

bution from hospital transmission, we also considered a model with only person-224
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to-person transmission (i.e. R0h = 0). We assumed that the index case started in225

the community (I compartment). In the absence of control measures, we found226

that 35% of outbreaks resulted in more than 1000 cases.227

As well as allowing us to model setting-specific transmission, the line list228

made it possible to directly calculate the case-fatality ratio (CFR) in different set-229

tings. We found that the probability of survival varied depending on route of230

transmission. The overall CFR – defined as the proportion of cases that died –231

across the 262 cases in our line list was 251/262 = 0.96 (binomial 95% CI: 0.93–232

0.98). The CFR for cases that resulted from person-to-person transmission was233

0.92 (0.87–0.96); in contrast, the CFR for cases that were exposed via a contami-234

nated syringe was 1.00 (0.96–1.00). Note that these empirical CFR estimates are235

based on a subset of 262 of the 318 reported cases in the Yambuku outbreak, for236

whom individual data were available. The CFR based on all 318 reported cases237

was 280/318 = 0.88 (95% CI: 0.86–0.92) (Breman et al., 1978).238

Discussion239

Using a model of Ebola virus transmission, we examined the role of different240

transmission routes during the 1976 outbreak in DRC. We found that the basic re-241

production number (R0) associated with hospital transmission was significantly242

above one. Our analysis also suggests that the person-to-person reproduction243

number Rpp could have been above 1 for the early part of the outbreak. This244

has profound implications: it suggests that a large outbreak (involving thousands245

of cases) could have happened even without changing any epidemiological con-246

ditions. We estimated the probability of such a large outbreak (>1000 cases) to247

be around 3%. This means that given the same initial conditions, Ebola outbreaks248

would have been occasionally been large, just by chance. Moreover, a relatively249

high person-to-person transmission component (R0pp ≈ 1) implied that the 1976250
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epidemic would have been difficult to control via hospital-based infection control251

measures alone. If the reduction in community transmission had been smaller, or252

infection had been seeded into a number of different communities, the outbreak253

could have continued for some time.254

Our results also suggest that changes in behaviour caused a significant re-255

duction in both hospital-to-community and within-community transmission. Al-256

though Yambuku Mission hospital closed on the 30th September, we found that257

the reduction in transmission occurred well before this point, most likely from sus-258

ceptible hosts having less contact with infected patients, and making fewer routine259

outpatient visits to the hospital (Breman et al., 1978). As well as contributing to260

transmission, infections from syringes also appeared to have a higher case fatality261

ratio (CFR) than person-to-person infections. This could have been the result of262

a larger viral inoculum during contact with a contaminated syringe. With more263

data on transmission events – including chains of person-to-person infection – it264

would be possible to further investigate the role of exposure in the natural history265

of Ebola infection.266

Even with four time series, it was not possible to robustly distinguish between267

person-to-person transmission resulting from contact with community cases and268

funeral attendance. Additional case data, such as dates on which patients took care269

of an infected case or attended a funeral ceremony could allow us to disentangle270

the relative role of these two routes of community transmission. However, it is271

plausible that individuals had similar contact rates with infected and dead patients.272

Epidemiological investigations in 1976 found that 86% of hosts infected from273

person-to-person transmission reported prior contact with alive Ebola patients; the274

same proportion reported attending the funeral of an infected case (Breman et al.,275

1978). Assuming similar transmissibility for both types of contact, this would be276

equivalent to setting βi = βd in our model.277
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There are some additional limitations to the model. First, we assumed that278

hosts mixed randomly both in the community and hospital. This was a reason-279

able assumption given that we stratified the data by route of transmission and280

outcome. However, there was evidence that certain groups, such as women aged281

15–29, were more likely to attend clinics at Yambuku Mission Hospital in 1976282

and hence be exposed to syringes (Report of an International Commission, 1978).283

To model the dynamics of the infection at a finer resolution, for instance by com-284

paring model outputs to age-stratified case data, it would be necessary to account285

for such heterogeneity. We also assumed that occurrence of reported cases was286

Poisson distributed, and the proportion reported did not vary over time or by loca-287

tion. This might be plausible when cases occur in a relatively short outbreak in a288

small geographic region, but during outbreaks that span a much larger geographic289

area and persist for several months, reporting could change with time and vary be-290

tween different settings. Moreover, if the dynamics of Ebola were to be modelled291

in real-time, it would be important to account for potential delays in reporting of292

cases and outcomes.293

In our stochastic scenario analysis we also assumed that timing and magni-294

tude of changes in transmission rate were independent of epidemic size. Our295

simulations that used parameters from the fitted model (Figure 6A) therefore as-296

sumed that identification and control of the infection would not have occurred297

quicker if more individuals had been infected earlier. However, we tested the298

sensitivity of our results to timing of hospital closure by assuming that the hospi-299

tal closed one week after the first case (Figure 6C); we also explored the effects300

of a smaller change in magnitude in person-to-person risk (Figure 6D). Ideally,301

it would be possible to define a functional relationship between incidence and302

changes in transmission rate (Funk et al., 2009). However, this relationship is303

likely to be complex and setting-specific: in 1976, behavioural changes reduced304
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transmission (Breman et al., 1978); in other Ebola outbreaks, large amounts of in-305

fection have increased fear and mistrust in the community, which might also have306

increased transmission (Borchert et al., 2011; World Health Organisation, 2014).307

The modelling tools illustrated here could easily be adapted for other Ebola308

outbreaks, and highlight the benefits of having data on likely source of infection309

and time of onset, hospitalisation and outcome for each patient. Previous Ebola310

modelling studies have examined the 1995 outbreak in Kikwit, DRC (Chowell311

et al., 2004; Ferrari et al., 2005; Legrand et al., 2007; Lekone and Finkenstädt,312

2006; White and Pagano, 2008; McKinley et al., 2009; Ndanguza et al., 2013),313

and the 2000/1 outbreak in Uganda (Chowell et al., 2004; Ferrari et al., 2005;314

Legrand et al., 2007). As in Yambuku in 1976, hospital-based transmission played315

a substantial role in both outbreaks (Khan et al., 1999; Francesconi et al., 2003).316

However, modelling studies so far have incorporated time series for onset and/or317

death only, which meant that it was not possible to robustly infer the role of differ-318

ent routes of infection, such as the contribution of hospital and community trans-319

mission. In contrast, by fitting a transmission model to time series stratified by320

transmission route, we were able to estimate the contribution of different sources321

of infection to the dynamics of the epidemic.322

We estimated that the overall R0 was 4.71 (95% CI: 3.92–5.66) for the 1976323

Yambuku outbreak. This is high compared to estimates of R0 in the 1995 and324

2000/1 outbreaks, which ranged from 1.34–3.65 (Table 1). However, our analysis325

suggests that most of the R0 in 1976 consisted of transmission via syringe; the326

person-to-person basic reproduction number was 1.34 (0.92–2.11). Given data on327

likely source of infection in 1995 and 2000/1, it would be possible to establish328

whether person-to-person transmission contributed a similar amount to overall329

transmission during these outbreaks.330

Our estimate of a person-to-person basic reproduction number R0pp ≈ 1 in331
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1976 suggests that Ebola would have been capable of generating a wide range of332

outbreak sizes in the absence of any extrinsic variation in epidemiological con-333

ditions. This implies that effective reduction in person-to-person transmission334

was crucial in reducing the potential size of the outbreak; stochastic simulations335

suggest Ebola could still have generated a large number of cases if hospital trans-336

mission was absent in 1976. Measures to reduce person-to-person transmission –337

including isolation of patients, follow-up surveillance of their contacts, and edu-338

cation to curtail infection in the community – are therefore likely to form a crucial339

part of the response to Ebola outbreaks (Borchert et al., 2011; Khan et al., 1999;340

Okware et al., 2002).341

As well as variation in social and cultural factors between different regions,342

the stochastic nature of Ebola outbreaks means that inference to other settings343

must be done with caution. Our analysis concentrates on a single outbreak of 318344

cases, rather than a set of past Ebola outbreaks, which have ranged from a small345

number of cases to several thousand (Figure 6B). Analyses of data from a large346

number of historical outbreaks simultaneously would help reduce this stochastic347

uncertainty and allow comparative studies to be performed. By making the line348

listing of the 1976 outbreak available (Supplementary File S1), we hope to stimu-349

late such work. Comparative studies could potentially shed further light on which350

underlying factors contribute to the differences in outcome of Ebola outbreaks,351

and which control measures are likely to be most effective.352
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Lekone, P.E., Finkenstädt, B.F., 2006. Statistical inference in a stochastic epi-418

demic SEIR model with control intervention: Ebola as a case study. Biometrics419

62, 1170–7.420

Leroy, E.M., Rouquet, P., Formenty, P., Souquière, S., Kilbourne, A., Froment,421

J.M., Bermejo, M., Smit, S., Karesh, W., Swanepoel, R., Zaki, S.R., Rollin,422

P.E., 2004. Multiple Ebola virus transmission events and rapid decline of central423

African wildlife. Science 303, 387–90.424

McKinley, T., Cook, A.R., Deardon, R., 2009. Inference in epidemic models425

without likelihoods. Int J Biostat 5, 24.426

19



Ndanguza, D., Tchuenche, J., Haario, H., 2013. Statistical data analysis of the427

1995 Ebola outbreak in the Democratic Republic of Congo. Afrika Matematika428

24, 55–68.429

Nkoghe, D., Kone, M.L., Yada, A., Leroy, E., 2011. A limited outbreak of Ebola430

haemorrhagic fever in Etoumbi, Republic of Congo, 2005. Transactions of the431

Royal Society of Tropical Medicine and Hygiene 105, 466–472.432

Okware, S., Omaswa, F., Zaramba, S., Opio, A., Lutwama, J., Kamugisha, J.,433

Rwaguma, E., Kagwa, P., Lamunu, M., 2002. An outbreak of Ebola in Uganda.434

Tropical Medicine & International Health 7, 1068–1075.435

Pattyn, S. (Ed.), 1978. Ebola virus haemorrhagic fever. Elsevier.436

Report of an International Commission, 1978. Ebola haemorrhagic fever in Zaire,437

1976. Bull World Health Organ 56, 271–293.438

Roberts, G.O., Rosenthal, J.S., 2009. Examples of adaptive MCMC. Journal of439

Computational and Graphical Statistics 18, 349–367.440

Sureau, P., Piot, P., Breman, G., Ruppol, F., Masamba, M., Berquist, H., Hey-441

mann, D., Kintoki, V., Koth, M., Mandiangu, M., et al., 1978. Containment and442

surveillance of an epidemic of Ebola virus infection in Yambuku area, Zaire,443

1976, in: Ebola virus haemorrhagic fever (Pattyn, SR ed.), Elsevier/North-444

Holland Biomedical Press Amsterdam, The Netherlands. pp. 116–121.445

White, L.F., Pagano, M., 2008. A likelihood-based method for real-time estima-446

tion of the serial interval and reproductive number of an epidemic. Stat Med447

27, 2999–3016.448

World Health Organisation, 2014. Disease outbreak news. WHO online .449

20



Figure 1: Daily incidence time series of Ebola virus disease onsets in 1976. Cases are coloured by

route of transmission, as reported by the epidemiological investigation team (Breman et al., 1978).

‘Both’ indicates infections that could have come from syringe or person-to-person transmission;

‘other’ denotes alternative infection routes (mainly congenital). The dotted line corresponds to the

hospital closure date (30th September).
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Figure 2: Schematic of model structure. Individuals start off susceptible to infection (S). Upon

infection they enter an incubation period (E), then at symptom onset they become infectious in

the community (I). After this point, they either: enter a recovered state (R); remain infectious and

go into hospital (H); or die and remain infectious (D) until buried (B). Hospitalised infectives

also move either into the recovered or dead compartment. Finally, the E compartment is split

according to the route of transmission in order to keep track whether a case was infected via

contaminated syringes at the hospital (Eh) or by person-to-person contact (Epp) with either an

infective in the community or a dead but not buried case. The forces of infection for the two

transmission processes are λh(t) = βh(t)H/N and λpp(t) =
(
βi(t)I+βd(t)D

)
/N , where βh(t),

βi(t) and βd(t) are the time-varying transmission rates given by Equation (1). Other parameters

are as follows: ε, inverse of the mean incubation period; γh, γd and γr, inverse of the mean duration

from symptom onset to hospitalization, death and recovery respectively; νd and νr, inverse of the

mean duration from hospitalization to death and recovery respectively (see Equation (7)); µb,

inverse of the mean duration from death to burial; κi(t) is computed to ensure that the overall

hospitalisation rate is equal to κ until hospital closure (see Equation (5)); φi and φh are computed

to ensure that the overall case-fatality ratio is equal to φ (see Equation (4)). Parameter values and

prior assumptions can be found in Table 2. The model was simulated by integrating the set (3) of

ordinary differential equations using the SSM library (Dureau et al., 2013).
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Figure 3: Comparison of our fitted model and observed daily incidence time series (black dots)

reconstructed from the line list of Ebola cases in Zaire in 1976. The mean and median fits are rep-

resented by solid and dashed red lines respectively. The dark and light red shaded areas correspond

to the 50% and 95% credible intervals.
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Figure 4: Drop in the reproduction number (R(t)) owing to change of behaviour in community

contacts and visit of outpatients to the hospital. The overall R (lower panel) can be split into an

hospital (upper panel) and person-to-person (middle panel) component. The dashed line indicates

the epidemic threshold (R = 1) and the dotted line corresponds to the hospital closure (30th

September). Solid, dashed and shaded red lines/area as in Figure 3.
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Figure 5: Potential alternative trajectories of an Ebola outbreak in Yambuku. Ten thousand

stochastic simulations were run with parameter values taken from the maximum a posteriori prob-

ability estimate (for readability only the first 200 are plotted). For comparison, data are plotted as

black dotted points.

25



Figure 6: Distribution of Ebola outbreak sizes in different scenarios. (A) Outbreak size distribu-

tion from 10,000 stochastic simulations using the maximum a posteriori probability estimate. (B)

Distribution of number of cases reported in Ebola outbreaks in Africa from 1976 to present. (C)

Outbreak size distribution from 10,000 stochastic simulations when hospital is closed 7 days after

the date of the first onset (i.e. 1st September). All other parameters remain the same. (D) Out-

break size distribution from 10,000 stochastic simulations when person-to-person transmission is

reduced by 50% rather than 98%. The final category includes all outbreaks with more than 2500

cases.
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Location Date R0 95% CI (if given) Reference

DRC 1995 1.83 Chowell et al. (2004)

3.65 3.05–4.33 Ferrari et al. (2005)

2.7 1.9–2.8 Legrand et al. (2007)

1.38 Lekone and Finkenstädt (2006)

2.22 1.9–2.73 Ndanguza et al. (2013)

1.93 1.74–2.78 White and Pagano (2008)

Uganda 2000/1 1.34 Chowell et al. (2004)

1.79 1.52–2.30 Ferrari et al. (2005)

2.7 2.5–4.1 Legrand et al. (2007)

Table 1: Previously published estimates of basic reproduction number, R0, for Ebola.
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Parameter Description Prior Estimates: median (95% CI)

N Population size Fixed 60, 000

T0 Date of introduction of index case to H compartment U [Aug 05−Aug 25] Aug 24 (Aug 21−Aug 24)

Th Date of hospital closure Fixed Sep 30

ρonset Proportion of onsets reported N (0.71, 0.05) 0.70 (0.62− 0.79)

ρd Proportion of death reported N (0.89, 0.05) 0.89 (0.80− 0.97)

ρr Proportion of recovery reported N (0.29, 0.05) 0.28 (0.19− 0.39)

κ Proportion of cases hospitalised until hospital closure N (0.17, 0.05) 0.21 (0.14− 0.30)

φ Case-fatality ratio U [0− 1] 0.88 (0.80− 0.94)

1/ε Incubation period (days) N (6, 0.1) 5.99 (5.80− 6.18)

1/γh Mean time from onset to hospitalisation (days) N (3, 0.1) 3.00 (2.81− 3.20)

1/γd Mean time from onset to death (days) N (7.5, 0.1) 7.49 (7.30− 7.69)

1/γr Mean time from onset to recovery (days) N (10, 0.1) 10.00 (9.80− 10.19)

1/µb Mean time from death to burial (days) N (1, 0.1) 0.99 (0.80− 1.18)

βi Transmission rate in the community at the onset of the

epidemic

U [0− 100] 0.10 (0.01− 0.20)

βd Transmission rate during traditional burial at the onset

of the epidemic

U [0− 100] 0.78 (0.08− 2.00)

αpp Shape of the change of person-to-person contact be-

haviour in community and during traditional burial

U [0− 5] 0.30 (0.14− 4.17)

τpp Midpoint date for the change of person-to-person con-

tact behaviour

U [Aug 25−Oct 14] Sep 27 (Sep 20−Oct 03)

δpp Reduction of the person-to-person transmission rate

following change of contact behaviour (%)

U [0− 100] 98.00 (90.00− 100.00)

βh Transmission rate in hospital at the onset of the epi-

demic

U [0− 100] 3.24 (2.36− 4.43)

αh Shape of the change of hospital seeking behaviour

from outpatients

U [0− 5] 2.29 (0.49− 4.85)

τh Midpoint date for the change of hospital seeking be-

haviour

U [Aug 25− Sep 30] Sep 17 (Sep 14− Sep 19)

Table 2: Parameter definitions and corresponding estimates. Prior distributions used during model

fitting are also shown.
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Parameter Route of transmission Estimates: median (95% CI)

R0h Hospital via syringe 3.32 (2.53− 4.34)

R0pp Person-to-person (in community and during funeral) 1.34 (0.92− 2.11)

R0 Overall 4.71 (3.92− 5.66)

Table 3: Estimates of the basic reproduction number, R0, split into different component transmis-

sion routes.
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