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The structure of many biological, social and technological systems can usefully

be described in terms of complex networks. Although often portrayed as fixed in

time, such networks are inherently dynamic, as the edges that join nodes are cut and

rewired, and nodes themselves update their states. Understanding the structure of

these networks requires us to understand the dynamic processes that create, main-

tain and modify them. Here, we build upon existing models of coevolving networks

to characterise how dynamic behaviour at the level of individual nodes generates

stable aggregate behaviours. We focus particularly on the dynamics of groups of

nodes formed endogenously by nodes that share similar properties (represented as

node state) and demonstrate that, under certain conditions, network modularity

based on state compares well to network modularity based on topology. We show

that if nodes rewire their edges based on fixed node states, the network modularity

reaches a stable equilibrium which we quantify analytically. Furthermore, if node

state is not fixed, but can be adopted from neighbouring nodes, the distribution

of group sizes reaches a dynamic equilibrium, which remains stable even as the

composition and identity of the groups changes. These results show that dynamic
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networks can maintain the stable community structure that has been observed in

many social and biological systems.

Keywords: coevolutionary networks, opinion formation, modularity, dynamic

equilibrium, protein-protein interaction

1. Introduction

Many scenarios exist in nature and society where individuals or entities bias their

interactions to a limited subset of a population. Populations that split into subpopu-

lations interacting strongly within themselves but much less strongly between them-

selves are said to exhibit community structure. In human and animal societies this

means that they consist of partially independent groups, cliques and tribes (Brown,

2000; Schelling, 1971; Lusseau and Newman, 2004), which can be important for

studying epidemic spread (Salathé and Jones, 2010). This notion can be extended

to more abstract representations of interactions in natural systems, such as in ge-

netic, protein-protein and metabolic interaction networks that are structured into

dynamic and functionally, spatially or temporally separated modules (Bader and

Hogue, 2003; Li et al., 2010; Przytycka et al., 2010); or in neural networks where

neurons tend to cluster into groups based on activity patterns (Segev et al., 2003).

The analysis of networks using tools borrowed from graph theory has proven to

be a useful approach for studying populations where individuals or entities within

the population interact only with a certain subset of the remaining population,

and significant effort has been put into developing methods to identify commu-

nity structure in such networks (Girvan and Newman, 2002; Schaeffer, 2007; Porter

et al., 2009; Fortunato, 2010). The networks are usually taken to be static – they

are presented or measured as snapshots in time, which neglects the fact that both

the properties of individuals and the interactions between individuals will usually

change over time. For example, human social and communication networks display

complex community structure despite individuals continually changing their pat-

terns of association (Palla et al., 2007). Only recently have an increasing number of

studies concentrated on the dynamical properties of networks (Gross and Blasius,

2008), as well as their relevance to the spread of infectious diseases (Gross et al.,
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2006; Volz and Meyers, 2009; van Segbroeck et al., 2010; Funk et al., 2010; Bansal

et al., 2010).

Previous models of dynamic networks have considered the coevolution of opin-

ions and network connections under homophily – where edges are rewired to nodes

of the same state (McPherson et al., 2001) – and heterophily – where edges are

rewired to nodes of a different state (Kimura and Hayakawa, 2008). In these stud-

ies, homophilous processes are often contrasted with state-spread – where states

are transferred (or equilibrated) between nodes (Deffuant et al., 2001; Holme and

Newman, 2006; Kozma and Barrat, 2008; Kimura and Hayakawa, 2008; Fu and

Wang, 2008; Vazquez et al., 2008). Existing work has tended to focus on exploring

the probability of achieving consensus, or the time taken to do so, and pay less

attention to the dynamics that occur when multiple groups or communities coexist

stably in the population.

Here, we focus on a topic that so far has received little attention: the emergence

of community structure in dynamic networks. We introduce a model where each

node has a state – which is either a fixed or dynamic property – and the network

stays dynamic under homophilous and random rewiring. In addition to propagating

states between nodes, we also use an “innovation” process to continually introduce

diversity into the population. With this model, we study the emergence and stability

of community structure in the resulting dynamic networks, and how they relate to

properties at either the level of individual nodes or at population level.

2. Methods

We first state our microscopic (individual-based) model as an algorithm. We will

later study the corresponding macroscopic (population-level) model, which approx-

imates the average behaviour of the microscopic model and allows for mathematical

treatment of some aspects of the model behaviour.

We consider a network of n nodes and m undirected edges, where each node i is

associated with a state Si ∈ {s1, s2, s3, . . .}. We deliberately leave interpretations

of the meaning of the state open at this point, as we will consider both scenarios

where states are fixed properties of nodes and ones where they can spread over the

edges of the network. Either way, what we deem states of nodes will form the basis
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for our implementation of homophilous rewiring, where nodes change edges to be

preferentially connected to nodes of the same state.

In the individual-based model exactly one of the possible processes below, chosen

with probability proportional to the corresponding rate, is invoked at each timestep.

The lengths of inter-event times are exponentially distributed, in line with Gillespie

(1977), so that the timescale remains consistent across different parameter settings.

Based largely on models of opinion flow (Kimura and Hayakawa, 2008) and of social

group formation (Geard and Bullock, 2008), we analyse the effects of two classes of

simple processes on the network, one containing rewiring events and the other state

change events. Let us first consider the class of processes dealing with rewiring:

edges may either be rewired to nodes of the same state (homophilous rewiring) or

to random nodes (random rewiring).

• homophilous rewiring (rate p) – Choose a random edge (i, j). Choose a random

node k where k 6= i, Si = Sk and there is no edge (i, k). Delete edge (i, j) and

add edge (i, k). If there exists no suitable k, do nothing.

• random rewiring (rate q) – Choose a random edge (i, j). Choose a random

node k such that there is no edge (i, k). Delete edge (i, j) and add edge (i, k).

If there is no suitable k, do nothing.

The second class of processes changes the states of the nodes: nodes may copy the

state of connected nodes or be updated with a random state.

• symmetric state spread (rate r) – Choose a random edge (i, j). Set Sj = Si.

• innovation (rate w) – Choose a random node i and a random state sk where

∀j, Sj 6= sk, set Si = sk.

Note that our implementation of state spread is symmetric in the sense that once

an edge is chosen, its endpoints are randomly designated to be source and target.

Choosing a random node first which then spreads its state to a neighbouring node

would make states with many nodes more likely to spread and invade other state

groups; choosing a random node which then copies a neighbouring state, on the

other hand, makes states with many nodes more likely to be invaded by other state

groups. Our method attempts to avoid these biases.
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The rates given for the four processes are to be understood as local (i.e., per-

edge or per-node) rates. To obtain global rates, we multiply with the number of

edges or nodes, respectively, depending on whether the events are node-based or

edge-based. This yields the population-wide rates mp, mq, mr and nw.

In simulations run with the state-based processes, we initialise all our nodes

with a null state to remove any biases from initial conditions. Nodes in that initial

state do not actively rewire or spread their state to other nodes until they have been

updated with another state. We then wait for a burn-in period until every node has

a non-null state before we take measurements on the networks. The distribution of

states thus emerges from the model dynamics.

3. Results

In the following, we will present our analysis of the dynamics that result from the

interplay between the processes outlined above. We will first focus on a scenario of

fixed states, where only the two rewiring processes occur, before turning to scenarios

where all four processes can happen.

(a) Fixed states

When the state of each node is immutable, the only processes affecting the

network are homophilous rewiring, with rate p, and random rewiring, with rate q.

Here, state can be interpreted as a certain property in a simple biological network,

or a relatively fixed property of individuals in a social network, such as relative age

or a visible trait. We initialise the model by distributing a given number of states

randomly among nodes.

When we run the model global network properties such as clustering coefficient,

average shortest path length and modularity stabilise in spite of the ongoing dynam-

ics. Generally, three different scenarios of network topology emerge (see Figure 1)

depending on the distribution of states and the relative fraction of homophilous

versus random rewiring events,

a =
p

q
(3.1)
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If a is small, or most rewiring events connect random nodes, the resulting dynamic

networks are of Erdős-Rényi type at any point in time, with the usual characteris-

tics of low clustering, short path lengths and low modularity. If a is large, or most

rewiring events connect nodes of the same state, groups of nodes sharing the same

state form tight communities with only transient connections to the rest of the net-

work. These transient connections, when they come into place, are quickly rewired

to again connect nodes of the same state. In that case, while the communities dis-

connect and reconnect over time, at any specific point in time the network fractures

into components of nodes with the same state, with the size of these components

depending on the abundance of the corresponding states. These network snapshots

possess strong clustering, but since they are disconnected they cannot be associated

with meaningful modularity and average path lengths.

Between these two extremes, an intermediate regime of values of a exists, where

the networks are formed of tightly-connected groups of the same state, but there is

still enough random rewiring to leave the networks connected at any point in time.

In that case, the network snapshots have strong clustering, large modularity and

average path lengths.

By considering a population-level analogue of the model described in the pre-

vious section, we can use mathematical analysis to predict the modularity of the

resulting networks in the intermediate regime. Modularity is a measure of how well

a network partition reflects the presence of communities, and is given by (Newman,

2006)

Q = x− ε (3.2)

where x is the proportion of all edges that are within-module edges – that is, those

linking nodes in the same module. The factor ε =
∑
i(di/2m)2, where di is the

total degree of nodes in the same module, corrects for the expected number of links

between nodes of the same module if the links were placed at random. A simple al-

gorithm for detecting modules then involves the identification of a network partition

that maximises Q (Newman and Girvan, 2004). It is worth noting that modularity

is not a perfect metric for community structure. It can fail to discriminate be-

tween structurally diverse partitions (Good et al., 2010), and using modularity to
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detect communities in large graphs has been demonstrated to miss small commu-

nities (Fortunato and Barthelemy, 2007). These concerns do not preclude the use

of modularity for our purposes: our networks are not so large that the resolution

limit becomes a serious concern; also, our networks are artificial, and we are more

interested in the level of modularity than the identity of modules.

We can take advantage of the fact that homophilous rewiring creates modules

of tightly connected nodes of the same state if a is large enough. The partition

that maximises Q will then be similar to one that identifies nodes of the same

state in modules. Therefore, we can use the connections to nodes of the same state

and to nodes of a different state as proxies for within-module and between-module

connections. In other words, we can interpret x to mean the proportion of all edges

that are within-state edges, or that link nodes of the same state.

If each node is initialised randomly with one of y states (0� y � n), the value

of ε is given by summing over a Poisson distribution,

ε =

∞∑
i=0

yPois(i, n/y)

(
2im/n

2m

)2

=
n+ y

ny
. (3.3)

In a similar way ε can be calculated for other state distributions. Over a period of

time where every link is rewired at least once (which is in the order of (p+q)−1), the

proportion of within-state edges will converge to approximately x ≈ (p+εq)/(p+q),

giving the modularity for the state partition as

Qs =
p

p+ q

(
1− 1

n
− 1

y

)
. (3.4)

The two processes can thus be used to generate a network that has a partition

with modularity given by Qs. This can be compared with the modularity Qt of the

partition of the same network that uses topological analysis to maximise modu-

larity (e.g., Girvan and Newman, 2002). Since the community structure has been

introduced by homophilously increasing the numbers of links between nodes of the

same state, with all other links placed randomly, it is unlikely that any topological

partition that splits up or combines groups of nodes of the same state could achieve
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a greater level of modularity than that found in the state partition. This intuition

is confirmed by Figure 2, which shows how the topologically generated partition

corresponds to the state partition when the network has topological community

structure (Qt > 0.4).

(b) Dynamic states

In many systems, such as social systems and neural networks, properties of the

nodes in the network can be affected by those they interact with (Segev et al., 2003;

Palla et al., 2007; Gautreau et al., 2009). For example, in human social systems we

tend to form relationships based on an implicit set of criteria such as our interests,

political affiliations, socioeconomic status or social norms (McPherson et al., 2001).

However, human adaptability means that the criteria can change – either by copying

others we interact with, or by innovating new sets of criteria. To reflect this, we relax

the immutability of states and introduce the state spread and innovation processes

described above. We may then apply our model to such a system by taking node

state to represent a set of criteria shared by many people.

We find that, under appropriate parameters, the model shows community struc-

ture with several concurrent groups, many of which have relatively long lifetimes

(Figure 3). The sizes of the groups, as well as their composition, are dynamic as

nodes join and leave them in the close interplay of state changes and edge rewiring

(Figure 4). Again, we see that, under a wide range of parameters, some global

properties, such as clustering coefficient or network modularity, stabilise as the

network keeps evolving. Mathematical analysis (see part(a) of the Appendix) also

predicts stability of network modularity and gives a good approximation of the

corresponding topological network modularity (as with Figure 2) when the state

spread parameters maintain a moderate number of groups (between n/50 and n/3).

To capture the mutual feedback between state changes and network rewiring,

we introduce two more quantities,

b =
w

r
, (3.5)
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the relative frequency of innovation versus state spread, and

c =
p+ q

r + w
(3.6)

the relative frequency of rewiring versus state update.

Depending on the model parameters, snapshots of the dynamic networks range

from random-like graphs with a single or few dominant states to fragmentation into

many small tight-knit communities, each of which share the same state (Figure 3).

In an intermediate regime, highly connected communities emerge, each contain-

ing mostly the same state, with some interconnections between those communi-

ties, similar to what we observed for fixed states (Figure 1). As before, if most

rewiring events are homophilous (large a), the network tends have high modularity

or even break up into fragments. If, on the other hand, most rewiring events are

random (small a), network snapshots resemble random graphs. If rewiring happens

on timescales faster than state changes (large c), we tend to see more modular

graphs, whereas if state changes are faster (small c), networks are more random.

Lastly, the frequency of innovation (regulated by b) largely dictates the number

of different states concurrently present in the network, with corresponding second-

order effects on the distribution of state prevalence and modularity as communities

in the network tend to be smaller if there are many concurrent states (see part (a)

of the Appendix).

To characterise the distribution of states at a given moment in time (i.e., how

many nodes are in each different state that coexists in a network) we exploit an

analogy between our model and the canonical ensemble of statistical physics. This

ensemble considers particles in a gas that exchange energy when they collide. In

the case of our model, the analogue of particles are the different states, and the

equivalent of their energy is the number of nodes that are in that state at a given

moment in time. When a state spread event happens, a node in the network changes

its state, therefore decreasing the number of nodes in its original state by one and

increasing the number of nodes in its new state by one – a process equivalent to

the exchange of energy between colliding particles.

If we assume such exchanges of nodes between groups of states to occur com-
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pletely randomly, the probability distribution Pi of groups that have i nodes is

given by the Boltzmann distribution

Pi =
exp(−iy/n)∑n
i=1 exp(−iy/n)

(3.7)

Simulations confirm that the state distribution does indeed stabilise (Figure 5).

However, while the shape of the distribution remains relatively constant, the iden-

tity of groups at a particular rank does not. The ongoing dynamics at the node

level causes states to grow and shrink in abundance (Figure 6).

The state distribution we observe in simulations is steeper than that given by

Eq. (3.7) (Figure 5). The most abundant state tends to contain a greater number

of nodes than predicted, and the less abundant ones fewer. This is because large

groups of the same state have more edges linking them to other states, and therefore

more possibilities to acquire or lose nodes. If, on the other hand, there is only one

node left of a given state it can stay in the network for a long time without being

selected for an event, or anything happening to it.

In fact, every state that appears in the network via the innovation process will

eventually go extinct due to the inherent stochasticity of the model. This becomes

clear when we consider the lifetime distribution of states. In Figure 7, we compare

the distribution of change of states in nodes (i.e., the time it takes until the state

of a given node changes) with the distribution of lifetimes of states in all nodes

(i.e., the time between a state is introduced through innovation and its extinction)

where state spread and homophilous rewiring are much more frequent than the ran-

domising processes of innovation and random rewiring. When state spread happens

on timescales faster than homophilous rewiring, the changes in network structure

resulting from rewiring will be too slow to create a modular structure – one dom-

inant group forms and persists for a long time, while most newly innovated states

go extinct quickly. Thus the distribution of node state changes and states largely

coincide.

If homophilous rewiring and state spread happen with similar frequencies, both

distributions are bimodal. The left mode is a reflection of the more than 50% chance

of newly innovated states to go extinct before they are spread to a second node (50%
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for the first spreading event involving the node plus a small chance that another

innovation will happen in the same node). Some states, however, become established

in the modular network, and the corresponding nodes will form a community and

subsequently be protected from invasion as they are surrounded by nodes of the

same state. This is why both distributions have another mode at longer lifetimes.

Note that the curve representing the lifetime of states has a more pronounced tail

because states can survive for a long time even if their composition of nodes change.

If homophilous rewiring happens on a much faster timescale than state spread, the

distributions again become unimodal. This is because innovations are immediately

rewired away from, so that there cannot be rapid extinction.

4. Discussion

We have presented a model of dynamic networks in which, over a range of parame-

ters, stable and connected community structure emerges. We have found the pres-

ence of such stable community structure to depend largely on the relative frequen-

cies of random to homophilous rewiring. Furthermore, we have provided evidence

that a partition of the network according to the state of nodes represents a partition

of maximal modularity, and can therefore be used to predict topological modularity.

This allowed us to treat modularity analytically, to predict convergent modularity

and to quantify its value according to the ratio of random to homophilous rewiring.

The two simple processes of homophily and random rewiring alone can gen-

erate community structure reminiscent of that found in the topology of simple,

but dynamic, biological networks with units (nodes) having fixed states but dy-

namic associations (edges). We consider two real-world examples where this is

relevant. The first is protein-protein interaction networks where proteins (repre-

sented by nodes in our model) often interact (recent or frequent interactions are

represented by edges) when they share similar amino-acid sequences (represented

by states). This homophilous process can explain community structure found in

such networks (Bader and Hogue, 2003; Li et al., 2010). Interestingly, yeast pro-

tein interaction data shows how communities in the network match well with actual

protein complexes (Li et al., 2010). The second example is the Schelling segregation

model, which suggests a mechanism for ghetto formation in humans of different eth-

Article submitted to Royal Society



12 J. Bryden, S. Funk, N. Geard, S. Bullock, V.A.A. Jansen

nic groups (Schelling, 1971). With ethnicity represented by node states, Schelling’s

model features a rewiring process that only rewires individuals with a high enough

proportion of different-state neighbours. This essentially homophilous process leads

to a highly-modular network. In our model, the introduction of a random rewiring

process means that modularity converges to an equilibrium.

When nodes have dynamic states we see how several groups of the same state can

exist concurrently in a population with community structure. While the presence

of these groups is relatively stable over time, their composition is not: individuals

move between groups such that some groups grow, some groups shrink, and others

have a roughly constant size, but a continual turnover in members. The behaviour

of this model variant is reminiscent of data showing such dynamics in human social

and communication networks (Palla et al., 2005; Newman et al., 2006) and so may

eventually provide insights into how the dynamics on these networks are gener-

ated. We characterised the stable group size distribution by comparing it to the

Boltzmann distribution, exploiting an analogy of our model to particle collisions in

statistical physics. We also compared dynamics at different timescales – the rela-

tive timescales of state spread and innovation, as well as the relative timescales of

processes affecting states and those affecting the network topology. We have char-

acterised the influence of each of these relative timescales on the behaviour of the

network dynamics over a wide range of parameters.

While our model can provide some insight into how endogenous processes pro-

duce community structure in real-world networks, there are some limitations to its

generality. Communities in real systems can be overlapping (Palla et al., 2005), and

the association between individual nodes and states may be non-exclusive (Geard

and Bullock, 2010), increasing the complexity of both structure and dynamics.

Moreover, our model dynamics are biased in that choosing a random edge in the

symmetric state spread process increases the frequency with which more highly

connected nodes update or spread their states. Other update rules could be argued

for, such as degree-based preferential attachment and node-based state spread, each

of which would result in different biases.

Future development and validation of our model will require stronger links with

data, especially data that are resolved in time. Such data has traditionally been
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difficult or costly to obtain, though new sources are becoming available, such as

online social communities (Mislove et al., 2007; Lazer et al., 2009). In spite of its

limitations, we believe this study to be useful as a baseline to which future models

of more specific systems may be compared. We have shown how stable properties

can emerge from a highly dynamical system, and focused on modularity, which is

a known property of many social and biological systems.

This research was funded by the UK Engineering and Physical Sciences Research Council

through standard research grant number EP/D002249/1.

Appendix A. Mathematical treatment

(a) State-based modularity

We can approximate the behaviour of x (the proportion of links that connect

nodes of the same state) under the four processes in our model by making a few

simplifying assumptions:

Fixed states

1. homophilous rewiring (rate mp) – In the random selection of edges, between-

state links are selected with probability 1 − x, and only in that case does

homophilous rewiring take place. Assuming that there is always a node avail-

able for rewiring to, the between-state link is replaced with a within-state

link. On average, this process thus increases x by (1− x)/m.

2. random rewiring (rate mq) – If we assume that all edges created through

random rewiring are between-state, we only need to consider events rewiring

within-state links (as the ones rewiring between-state links do not change x).

Picking within-state links happens with probability x, so this process will on

average decrease x by x/m.

Dynamic states

3. symmetric state spread (rate mr) – Again, if a between-state link is selected

(with probability 1 − x), it becomes a within-state link. Assuming the node

being updated does not have any other links to nodes with its new state, or
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that the average degree d = 2m/n is small with respect to the number of

states currently in the network, it will on average have xd within-state links

that become between-state links. Including the newly added within-state link,

this process on average decreases x by (1− x)(xd− 1)/m.

4. innovation (rate nw) – The updated node will have a new state so all its

links will become between-state links. A typical node will have xd within-

state links, so this process will on average decrease x by xd/m.

We can take all four processes together to give an equation for the temporal evolu-

tion of x:

ẋ = mp(1− x)/m−mqx/m−mr(1− x)(xd− 1)/m− nwxd/m

= p(1− x)− qx− r(1− x)(xd− 1)− 2wx
(A 1)

Note that the process of state spread adds a nonlinearity because both the proba-

bility of selecting a between-state link, as well as the amount by that the fraction

of between-state links is typically changed by state spread, depend on x itself.

We derive equilibrium values of x by solving ẋ = 0 in Equation (A 1); these are

given by,

x̃ =
p+ q + r(1 + d) + 2w ±

√
(p+ q + r(1 + d) + 2w)

2 − 4rd(p+ r)

2rd
. (A 2)

Equilibria are stable if and only if,

x̃ <
p+ q + r(1 + d) + 2w

2rd
, (A 3)

Substitution of Equation (A 3) into Equation (A 2) shows that unstable equilibria

are only found when the ± term in Eq. (A 2) is positive, and stable equilibria are

found when the ± term in Eq. (A 2) is negative. Algebraic manipulation can be

used to show that unstable equilibria can only be found when x̃ > 1. Similarly,

stable equilibria are always in the region, 0 < x̃ < 1. This analysis thus shows that

for all values of p, q, r, w, d > 0, there is always a stable equilibrium for x in the

region 0 < x̃ < 1
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Further manipulation can be done to show that x̃ will increase for increasing

values of p (done in this case by comparing x̃ for p and p + δ) and decrease for

increasing values of q, w and d. When,

d >
p+ q + 2w

p

x̃ will decrease for increasing values of r.

The prediction given in Equation (A 3) is compared with modularity generated

from simulations over a range of parameters in the supplement to this article. Both

the modularity of the state partition and the maximum modularity from topological

analysis were calculated at several time steps (wide enough apart for the network to

significantly change) after the burn in period. The prediction and mean modularities

(with standard deviations) are plotted in Figures S1, S2 and S3. In the main, the

mathematical prediction is good when there is community structure in the network

– but there are small differences due to the correction for within-state links expected

by a random rewiring of the network (ε) for the modularity measures. These will

decrease as the number of nodes increases. The prediction is also good when the

number of states is moderate (between n/50 and n/3).

(b) State distribution

To find the most likely distribution of states, we use an analogy with the distri-

bution of particle energies in an ideal gas. Similarly to the way particles exchange

energy in random collisions, the groups of states in our model exchange nodes. We

conjecture that the most likely distribution of states yi can be found by maximising

the number of microstates yielding that distribution (equivalent to minimising the

entropy) under the constraints of constant number of states

n∑
i=1

yi = y (A 4)

and number of nodes
n∑
i=1

iyi = n. (A 5)
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The derivation of the most likely distribution follows the same steps as the deriva-

tion of the Maxwell-Boltzmann distribution of statistical physics. The number of

microstates yielding a distribution y1, y2 . . . yn is the number of ways to distribute

y states among these,

Ω(n, y, {yi}) = y!

n∏
i=1

1

yi!
(A 6)

Maximising Ω(n, y, {yi}) is equivalent to maximising

ln Ω(n, y, {yi}) = y ln y − y +

n∑
i=1

(−yi ln yi + yi), (A 7)

where we used Stirling’s formula, y! ≈ yye−y.

We introduce Lagrange multipliers α, β to impose the constraints of constant num-

ber of states and particles.

f(yi) = ln Ω(n, y, {yi}) + α(y −
n∑
i=1

yi) + β(n−
n∑
i=1

iyi)

= y ln y − y + αy + βn+

n∑
i=1

(−yi ln yi + yi − αyi − βiyi),
(A 8)

and maximise f(yi) by solving

∂f

∂yi
= − ln yi − α− βi = 0, (A 9)

yielding

yi = e−α−βi (A 10)

as the distribution that maximises Ω(n, y, {yi}). The first constraint,
∑
yi = y

yields

e−α =
y∑
e−βi

, (A 11)

so that

yi = y
e−βi∑
e−βi

. (A 12)

Article submitted to Royal Society



Stability in flux 17

The second constraint,
∑
iyi = n, gives∑n

i=1 ie
−βi∑n

i=1 e
−βi =

n

y
. (A 13)

To determine β analytically, we make a continuum approximation and replace the

sums from 1 to n by integrals from 0 to infinity. This yields∫∞
0
ie−βidi∫∞

0
e−βidi

=
1

β
, (A 14)

and β = y/n via Eq. (A 13). Putting this back into Eq. (A 12) and setting Pi = yi/y

yields Eq. (3.7).
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a=1 a=10 a=100
Figure 1: Network snapshots for different values of a (where a = p/q) when no state
update occurs (i.e., r = w = 0). Different colours indicate different states. Three
classes of stable system behaviour can be distinguished: (I) When the rate of random
rewiring is high with respect to random rewiring (e.g., a = 1), network topology
is random; (II) When the rate of random rewiring is low (e.g., a = 0.01), the
network fractures into a set of disconnected, homogeneous components; (III) When
homophilous and random rewiring are balanced (e.g., a = 0.1), densely connected
homogeneous state groups are evident, but the network as a whole also remains
connected.
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Figure 2: Modularity based on maximal topological modularity as given by the
Girvan-Newman algorithm (Qt) as measured in simulations (crosses), and as given
by our algorithm identifying modules based on state (Qs), as predicted analytically
(line) and measured in simulations (circle), in terms of the fraction of rewiring
events that are homophilous, a = p/q.
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Figure 3: Network snapshots for different rates of state spread (r) and random
rewiring (q) (p = 1 and w = 0.001). Snapshots were taken at t = 5× 106, to ensure
that any transient dynamics had passed. Different colours indicate different states.
Again, three classes of stable system behaviour can be distinguished: (I) Random
network topologies result not only when the rate of random rewiring is high (q = 1),
but also when the rate of state spread is either very low or very high. In the former
case, the absence of state spread inhibits the organising tendencies of homophilous
rewiring; in the latter case, a single group rapidly establishes itself and dominates
the population, in which case homophilous rewiring becomes effectively equivalent
to random rewiring. (II) When the rate of random rewiring is low and there is a
moderate level of state spread (e.g., r = 0.001; q = 0.1), the network fractures into
a set of disconnected, homogeneous components. (III) With intermediate levels of
both state spread and random rewiring (e.g., r = 0.01; q = 0.01), densely connected
homogeneous state groups are evident, but the network as a whole also remains
connected.
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Figure 4: An illustration of the evolution of state groups. This figure plots the size
of eight different state groups over 200,000 time steps (p = 1; q = r = w = 0.01).
The eight state groups shown (of a total of 57 that existed at some point during
the simulation run) were each the largest in the population at some point in time.
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Figure 5: Size distribution of state groups. Shown is the mean size of the ith largest
group across 20 snapshots from a simulation run (circles; a = 100; b = 0.001; c =
0.3), error bars indicating one standard deviation. Also shown is the distribution
as predicted by Eq. (3.7) (crosses), obtained by sampling from y = 28 random
numbers summing up to n = 1000, using the algorithm of Stafford (2006), until
convergence was obtained. Despite the continually changing composition of state
groups in a population (Figure 4), distribution of group sizes is relatively stable
over time.
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Figure 6: Autocorrelation measures for node and state group properties (p =
1.0; q = r = w = 0.01). Node state measures the fraction of nodes that are in
the same state at time t+ d as they were at time t. Node neighbourhood measures
the fraction of node pairs that are neighbours at time t + d that were also neigh-
bours at time t. Group overlap measures the relative overlap in group membership
between time t and time t+d. Note that all three measures drop rapidly with initial
increases in correlation distance; thereafter, some correlation remains at the group
level, while node-level correlation drops close to zero.
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(b) a = 102; b = 10−3; c = 10−1.5
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Figure 7: Distribution of the times it takes until a node changes its state (dashed
line), and distribution of the total lifetimes of states from first innovation until they
go extinct (solid line) for three different sets of parameters representing different
relative timescales of state spread and homophilous rewiring: (a) fast state spread,
(b) similar timescales, (c) fast rewiring.
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Figure S1: The relative frequency of homophilous rewiring to random rewiring,
when state processes also happen (b = 0.01 and c = 50). The difference between
the mathematical prediction x̃ of edges connecting nodes of the same state (line)
and the modularities found in simulations based on node state (Qs, circles) and
topological analysis (Qt, crosses) arises because in the mathematical analysis we
do not account for within-state links created by random rewiring of the network
(ǫ). Other parameters, n = 1000 and m = 3000.
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Figure S2: Changes to the relative frequency of innovation to state spread
(increasing b), also changes the number of states existing contemporaneously.
Shown is the mathematical prediction for the fraction x̃ of edges connecting
nodes of the same state (line), as well as modularity found by simulations based
on node state (Qs, circles) or topological analysis (Qt, crosses). When b is too
large or too small (at the left and right of the graph), the network becomes to a
random-like network at any given time. Other parameters, n = 1000, m = 3000,
a = 3.33, c = 50, and b ranges from 0.001 on the left to 1 on the right of the
figure.
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Figure S3: When varying the relative frequency of rewiring to state update, the
mathematical prediction for the fraction x̃ of edges connecting nodes of the same
state (line) is largely similar to the modularity found by simulations based on
node state (Qs, circles) or topological analysis (Qt, crosses). When state spread
is less frequent (c > 1), the difference between the mathematical prediction and
the modularities found in simulations arises because in the mathematical anal-
ysis we do not account for within-state links created by random rewiring of the
network (ǫ). When state spread is more frequent (c < 1) the network becomes
a random-like network at any time, and the topological algorithm will find a
partition with greater modularity than the state partition. Other parameters,
n = 1000, m = 3000, a = 3.33 and b = 0.01.
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