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Abstract  

 The identification of undiagnosed disease outbreaks is critical for mobilizing efforts to prevent 

widespread transmission of novel virulent pathogens. Recent developments in online surveillance systems 

allow for the rapid communication of the earliest reports of emerging infectious diseases and tracking of 

their spread. The efficacy of these programs, however, is inhibited by the anecdotal nature of informal 

reporting and uncertainty of pathogen identity in the early stages of emergence. We developed theory to 

connect disease outbreaks of known etiology in a network using an array of properties including 

symptoms, seasonality and case-fatality ratio. We tested the method with 125 reports of outbreaks of ten 

known infectious diseases causing encephalitis in South Asia, and showed that different diseases 

frequently form distinct clusters within the networks and the approach can correctly identify unknown 

disease outbreaks with an average sensitivity of 76% and specificity of 88%.  Outbreaks of some diseases, 

such as Nipah virus encephalitis, were well identified (sensitivity = 100%, PPV = 80%), whereas others 

(e.g., Chandipura encephalitis) were more difficult to distinguish. These results suggest that unknown 

outbreaks in resource-poor settings could be evaluated in real-time, potentially leading to more rapid 

responses and reducing the risk of an outbreak becoming a pandemic. 

 

Keywords: emerging infectious disease, encephalitis, complex networks, South Asia, Nipah virus 
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Introduction 

  

 Despite the enormous social, 

demographic, and economic impact of emerging 

infectious diseases, and billions of dollars spent 

to control them, there has been limited progress 

in the development of tools for early 

intervention that could prevent the emergence 

and spread of pathogens in the initial stages of 

an epidemic (1-5). This is an acute problem in 

resource-poor nations that have limited 

surveillance capacity and often lack laboratory 

facilities to diagnose unusual outbreaks. 

 To address this issue, online databases 

and surveillance reporting networks have been 

developed to identify and monitor the 

emergence and spread of infectious agents. 

These include tools to aid in the clinical 

diagnosis of single cases of infectious diseases 

(6-12), tools that process unverified epidemic 
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intelligence using specific keywords, e.g. 

HealthMap.org (13, 14) and Google Flu Trends 

(15), those that compile verified outbreak data, 

e.g. GLEWS (16), GAINS (17), and GIDEON 

(6), and those that disseminate expert-moderated 

outbreak reports and anecdotal information, e.g. 

ProMED-mail (18). To the best of our 

knowledge, no decision support tool exists for 

the rapid and inexpensive assessment of 

outbreaks, particularly in the face of minimal 

information and limited resources to make the 

clinical assessments necessary to parameterize 

one of the existing diagnostic models. 

 We developed a method based on 

network theory to evaluate potential causes of 

outbreaks of disease.  While many statistical 

approaches exist for assigning multivariate data 

records into categories, e.g. Bayesian network 

analysis or Discriminant Functions Analysis 

(19), the method we present here has the 

advantage of allowing for multiple equitable 

solutions for symptom assignment.  Our method 

employs an ensemble of adequate solutions and 

this ensemble allows one to assess certainty of 

outbreak diagnosis assignment. 

 Network theory is the study of 

relationships between entities (‘nodes’) and 

connections between these entities (‘edges’) 

(20). Network theory has previously been used 

effectively to describe social and biological 

datasets (21, 22), and it has been shown to be a 

useful tool for cluster analysis (23). Here, we 

consider outbreaks as nodes, and create an edge 

between any two outbreaks if they share 

symptoms, or have similar properties such as 

case fatality ratio or seasonality (Fig. 1).  We 

give an edge greater weight if the two outbreaks 

at either end are more similar in that sense (see 

supplementary methods for details). Groups of 

outbreaks that are more strongly connected to 

each other than to other outbreaks in the network 

can be said to form a ‘cluster’ or, more 

commonly in network theory, a ‘community’. If 

outbreaks of different diseases were perfectly 

distinguishable on the basis of the properties we 

consider, each disease would form a single and 

distinct cluster of outbreaks of that disease. In 

that case we could use this to link unidentified 

outbreaks to those of known etiological agents 

with similar properties (e.g. seasonality, case 

fatality ratio, symptoms) by adding them to the 

network and testing which cluster they are most 

similar to (in the sense that they are strongly 

connected to outbreaks within that cluster). We 

applied this method to 125 outbreak reports of 

ten different diseases causing encephalitis in 

South Asia. Furthermore, we analyzed 97 

outbreaks of encephalitis in South Asia reported 

on ProMED-mail that were reported without a 

definitive diagnosis. We associated each of them 

with one of the ten diseases based on which 

cluster in the network they are most strongly 

linked to. As such, our approach uses a novel 

interpretation of an abstract network to link 

(unidentified) outbreaks to those of known 

etiological agents with similar properties (e.g. 

seasonality, case fatality ratio, symptoms). We 

chose South Asia as it has been identified as an 

emerging infectious disease ‘hotspot’ (24), and 

has a history of recent pathogen emergence, 

including those causing encephalitis, e.g. Nipah 

virus encephalitis, Japanese encephalitis, and 

cerebral malaria (25). Further, investigations 

into encephalitis outbreaks in South Asia have 

been limited and diagnoses are sometimes 

controversial (26). 

 

Methods 

 

Differential Diagnosis of Diseases in South Asia 

 Our aim was to develop a method that 

could be used to identify the pathogens causing 

undiagnosed outbreaks of encephalitis in South 

Asia. We first built a library of potential 

pathogens, and then developed a model to 

quantify associations between the symptoms, 

seasonality, and case fatality ratio (CFR) caused 

by infection with these pathogens  

 We used the Global Infectious Disease 

and Epidemiology Network (GIDEON) online 

database to create a library of potential diseases 

and pathogens and to establish a differential 

diagnosis for diseases in South Asia with 

encephalitis as a potential symptom. The 

GIDEON database contains a diagnostic module 

that utilizes information on symptoms, country, 

incubation period, and laboratory tests to 

construct a ranked differential diagnosis (27). 

Using common characteristics of outbreaks 

reported in ProMED-mail, we queried GIDEON 

for the most likely diagnoses for such diseases in 

each of the eight nations comprising the South 
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Asian Association for Regional Cooperation 

(SAARC): Afghanistan, Bangladesh, Bhutan, 

India, Maldives, Nepal, Pakistan, and Sri Lanka. 

Search criteria included “outbreak or case 

cluster”, “severe/fatal”, “fever”, 

“neurological/headache”, and 

“neurological/encephalitis”. For each nation, we 

recorded all potential diagnoses with >1% 

probability of occurrence. Potential diagnoses 

with <1% probability of occurrence and “first 

case scenario” diagnoses were excluded. The ten 

diseases identified and their diagnoses were 

compiled into an inclusive list of differential 

diagnoses for the SAARC region. Two diseases, 

influenza and rabies, appeared in the region-

wide differential diagnosis but were excluded 

from the analysis because symptoms associated 

with their outbreaks are distinct and relatively 

easily distinguished from encephalitides (e.g. for 

rabies, due to rapid fatality, lack of human-to-

human transmission and distinct symptoms). 

Two other diseases, Chandipura encephalitis and 

chikungunya fever, were added to the 

differential diagnosis based on their increasing 

incidence within the region. 

 We then conducted a literature search to 

compile a dataset of the clinical and 

epidemiological features of known outbreaks of 

each of the ten diseases (Supplementary 

Appendix, Table S1): Chandipura encephalitis, 

chikungunya fever, dengue fever, Japanese 

encephalitis, malaria, measles, aseptic 

meningitis, bacterial meningitis, Nipah virus 

encephalitis (NiV), and typhoid/enteric fever. 

We searched the literature for the clinical and 

epidemiological features of each disease, and we 

restricted the results to the SAARC nations in 

order to capture the seasonality and disease 

etiology in this region. For each published 

report, we recorded the location of the outbreak 

or study, the month and year of recorded cases, 

CFR, and the prevalence of symptoms among 

cases (recorded as % of patients). Results for 

malaria include only complicated and cerebral 

malaria, and results for “dengue” include dengue 

fever, dengue hemorrhagic fever, and dengue 

shock syndrome. 

 

Network Analysis 

 We developed a network model to 

determine how outbreaks of the same disease 

cluster together and how distinct they are 

compared to outbreaks of other diseases, with 

respect to seasonality, CFR, and symptoms. Our 

method is based on the assumption that in 

outbreaks of the same disease patients will show 

similar symptoms, occur in similar times of the 

years, and/or have similar CFRs. If this 

assumption is correct, outbreaks will be linked 

by similar traits and would be clustered into 

groups of the same disease (Fig 1) (28). We 

constructed a network from the set of 125 

diagnosed outbreak reports from the literature of 

the ten diseases selected, with each node 

representing a single outbreak report. A 

connection (edge) is created between two 

outbreaks (nodes) if they share a symptom or 

property, with the weight of the edge given by a 

weighted sum of all symptoms/properties 

shared. We used a previously developed 

algorithm to detect densely connected clusters of 

outbreaks in networks (29). As some symptoms 

may be more important than others in 

distinguishing one disease from another, we 

allowed for unequal weights to each of the 

symptoms in the model. We determine 

appropriate symptom weights using a method 

that yields maximal within-cluster similarity and 

between-cluster dissimilarity (called network 

modularity, see Supplemental Appendix 

Methods and Table S2). Because multiple sets of 

symptom weights could result in similar 

maximal network modularity, we created an 

ensemble of sample networks, each with its own 

set of symptom/property weights, and averaged 

over all of them in evaluating the outbreak 

reports to increase the reliability of our analysis.  

 

Model Testing 

 We tested the reliability of our method 

by removing each of the reference reports from 

the network, running the model with the 

removed reference report as an ‘undiagnosed’ 

report, and checking if the model-predicted 

diagnosis matched the actual diagnosis. This 

allowed us to determine the sensitivity 

(proportion of true positives correctly identified 

as such) and specificity (proportion of true 

negatives correctly identified as such) of the 

model for each disease. We calculated positive 

predictive values (PPV) and negative predictive 

values (NPV) for each of the ten diseases. PPV 
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is the proportion of positive results that are true 

positives (e.g. the proportion of outbreaks 

identified by the model as dengue that were 

laboratory confirmed as dengue cases), whereas 

NPV is the proportion of negative results that 

are true negatives (e.g. the proportion of 

outbreaks identified by the model as not dengue 

and were confirmed as something else).  We 

assumed that each of the ten diseases considered 

was equally likely to be the correct diagnosis for 

any given ‘mystery case’ presented, and that all 

of our reports could be diagnosed as one of the 

ten diseases considered.  

 

Undiagnosed Outbreaks 

 We reviewed ProMED-mail for reports 

of undiagnosed encephalitis between 1994 and 

2008. Search terms included “encephalitis”, 

“fever”, “mystery”, “undiagnosed”, and 

“unknown origin”. Search results were again 

restricted to the SAARC nations. For each 

ProMED-mail report, the geographic location, 

month and year of the first recognized case, 

number of people affected, number of deaths 

and clinical symptoms were recorded. We 

calculated the CFR as the number of deaths per 

total number of cases reported for each outbreak. 

For outbreaks with multiple associated incident 

reports over time, we recorded the total number 

of reports and final diagnosis, if provided.  

 For the period under study (1994-2008), 

a sample of 99 outbreaks of undiagnosed 

encephalitis was selected from ProMED-mail 

(Supplementary Appendix Table S3). We 

removed two outbreak reports that had 

incomplete information (lacking symptoms, 

CFR, or seasonality), reducing the dataset to 97 

outbreaks. We added the undiagnosed outbreaks 

to each of the sample networks, using the 

weights as determined before. For each 

undiagnosed outbreak added, we determined the 

cluster the outbreak associated best with (see 

supplementary material), and recorded each 

disease present in that cluster. We used a 

bootstrap method across the sample networks to 

identify the disease associated most frequently 

with a given undiagnosed outbreak, and we 

consider this its primary diagnosis. We 

calculated the number of times a disease was 

associated with a given outbreak out of the total 

number of networks tested to determine an 

association score and a corresponding 95% 

confidence interval around this association. 

When multiple diseases had overlapping percent 

association confidence intervals, they were all 

considered to be plausible diagnoses 

(Supplementary Appendix Table S4), thus 

increasing sensitivity but reducing specificity of 

our method. 

 

 

Results 

 

 Seven communities or clusters of 

outbreaks based on symptoms, seasonality and 

CFR were identified from associations of the 

original set of 125 outbreak reports from the 

literature of the ten diseases tested (Fig. 2, outer 

ring). Ideally, each cluster of outbreaks would 

consist of reports of a single disease. However, 

given overlapping sets of symptoms, CFR, or 

seasonality, most clusters included outbreaks of 

more than one disease. Of the ten diseases 

included in this study, NiV infection was 

identified most reliably (100% sensitivity, Table 

1 and 80% PPV, Table 2), and forms a distinct 

cluster (Fig. 2). It was unique in our analysis in 

having a high CFR (~70%), a distinct 

seasonality (spring), and symptoms of 

respiratory difficulty, seizure, unconsciousness, 

vomiting and weakness. Other diseases with 

relatively high PPV were chikungunya fever 

(75% PPV) on the basis of low CFR and 

symptoms of nausea, joint pain, rash, and 

myalgia, and typhoid fever (58% PPV) based on 

the symptom of pneumonia and low CFR (a few 

percent). Diseases that were moderately difficult 

to identify were malaria (47% PPV) on the basis 

of CFR (~30%) and the symptoms of 

unconsciousness, jaundice, acute renal failure, 

seizure, respiratory difficulty and neck rigidity; 

and bacterial meningitis (PPV 42%) on the basis 

of CFR (~15%) and neck rigidity. The diseases 

most difficult to identify were dengue fever 

(31% PPV), Chandipura encephalitis (27% 

PPV), Japanese encephalitis (25% PPV) and 

measles (21% PPV), all of which had properties 

that made them similar to other diseases. As the 

reference dataset contained only three entries of 

aseptic meningitis the PPV of 49% is tentative. 

  Of the 97 unidentified outbreaks from 

ProMED that we analyzed, our model evaluated 
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27 as uniquely associated with a single disease 

(Fig. 2, white circles of the inner network; 

Supplementary Appendix Table S4). A further 

38 diseases were associated with two diseases 

and 16 were associated with three of the ten 

diseases. Of these 54 that yielded multiple 

diagnoses, six were associated with NiV. 

Sixteen outbreaks were marked as inconclusive 

because they either did not contain enough 

information or associated with more than three 

diseases.  

 Since NiV was the best-predicted 

disease in our dataset (PPV 80%) and is 

relatively new and therefore easily misidentified 

on the ground, we investigated further the 

possible outbreaks of NiV (Fig. 3). Of the six 

associated with NiV in our model, two were 

clinically confirmed as NiV in follow-up studies. 

For the other four, two were never identified, 

one was diagnosed as dengue (but moderators 

speculated that it may have been NiV), and one 

was diagnosed as avian influenza, which was not 

represented in our reference dataset.  

 Attempts to identify two unknown 

outbreaks highlight the importance of accurate 

data in the initial reports.  Our model associated 

two other outbreaks that were later reported in 

the literature to have been diagnosed as NiV 

with malaria, bacterial meningitis, Japanese 

encephalitis or typhoid fever (30, 31). This 

misidentification resulted from the fact that in 

the initial ProMED-mail reports for these two 

outbreaks, the CFR was significantly lower than 

in the post-outbreak data in the literature (30, 

31). The CFR may have been understated in 

ProMED-mail reports due to incomplete 

recording or right-censoring of the CFR when 

estimated during an ongoing outbreak (32). 

When the later estimates for CFR from the 

literature were used for these two outbreaks, our 

method correctly identified them as NiV. 

 

Discussion 

 

 We have developed a novel method to 

identify disease outbreaks based on their 

similarity in properties and symptoms reported. 

Our method yielded high PPV, sensitivity and 

specificity for an important virulent disease, 

NiV, and relatively high values for several other 

causes of encephalitis in South Asia.  We then 

used this method on unidentified reports of 

encephalitis outbreaks in South Asia, and 

identified several outbreaks as likely being 

caused by NiV, which was new to the region at 

the time when the outbreaks occurred. 

Retrospective studies of several of the NiV 

outbreaks identified the causative agent, and our 

method provided the correct identification in all 

cases, but with a key caveat: when the original 

outbreak contained inaccurate information on 

one or more outbreak traits (in this case, the 

CFR), the method incorrectly classified the 

outbreaks. This highlights the strength of the 

method when the original outbreak has accurate 

information, as well as the importance of the 

quality of information in the reporting system. 

Unfortunately, inaccurate initial estimates of the 

CFR are not infrequent (and difficult to correct 

if they result from right-censoring) and can lead 

to allocations of public health resources that 

might retrospectively be considered less than 

ideal, e.g. the 2009 H1N1 pandemic (33-35). 

There are limitations to our approach, 

and this study provides a proof-of-principle for a 

potentially powerful method. As just noted, the 

accuracy of our method relies critically on the 

accuracy of the data reported and the 

completeness of the reports. Furthermore, it is 

possible that some outbreaks continued beyond 

the last posting of details on ProMED-mail, and 

CFRs estimated during an outbreak are known to 

be biased (32). Some of these problems could be 

mitigated by including data taken at different 

stages of outbreaks or by comparing the 

unidentified outbreak reports with identified 

outbreaks reported via the same source 

(ProMED-mail). In addition, even with accurate 

information, our method can only provide 

probabilities for association with each of the 

diseases based on the assumption that it is one of 

the diseases. However, while our method is 

currently limited by the list of reference diseases 

provided, it can also be used to flag reports 

which do not seem to fit any of these well. If, for 

example, several outbreak reports for a region 

were highly clustered with each other but not 

with any known disease in the model, then this 

would be evidence for a potentially new disease, 

or new disease to the region, and could be 

prioritized for further investigation.  Similarly, 

this approach may have value in determining 
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whether exotic pathogens have been introduced 

to a region either inadvertently or deliberately.  

The ensuing outbreaks may have characteristics 

that cause them to cluster with diseases outside 

those normally encountered in a region, and an 

expanded network analysis may be able to 

identify their etiology more rapidly than sample 

collection would allow. 

Further, this method can be applied 

more broadly to extend the range of diseases as 

well as hosts under consideration (e.g. zoonotic 

disease in wildlife reservoir hosts).  Disease 

communities with distinct symptoms will be the 

best candidates for use with this method.  

Encephalitis was an ideal candidate symptom as 

it was less common than a symptom such as 

fever, but common enough to be shared by a set 

of diseases within a single region.  Diseases with 

respiratory illness, on the other hand, would be 

significantly more difficult to differentiate 

because of the ubiquitous nature of this 

symptom across many possible diseases.  

Further research is required to determine the full 

potential of this approach and the applicability 

of this method to other diseases. 

A major strength of our approach is that 

it does not require expert judgment or laboratory 

analysis, and provides a way to quickly and 

inexpensively assess outbreaks.  A key direction 

for future research would be to compare the 

approach we have proposed here to expert 

opinion.  Comparisons of our method to other 

clustering techniques would also be of 

substantial interest, but we note that an 

important challenge is that many other methods 

have substantial difficulty with incomplete data 

and unequal weighting of traits, whereas our 

method is able to overcome both of these 

obstacles. Given the opportunistic nature of 

outbreak reports, this is an important strength. 

Our method has the potential to greatly 

increase the value of surveillance systems like 

ProMED-mail, and online surveillance systems 

in general, which rapidly disseminate 

information on outbreaks prior to the results of 

laboratory diagnostics. Although our initial 

analysis was restricted to ProMED-mail it is 

likely that this method would also be effective 

using data that has been collected by filtered 

searches such as those used by HealthMap (14).  

More generally, the recent increase in the 

number of online surveillance tools, and their 

speed and efficiency at reporting novel 

outbreaks, combined with our analysis approach, 

could become a significant rapid identification 

tool for diagnosis. 

With increasing availability and 

capacity of Internet surveillance systems, our 

application of network theory to outbreak 

assessment demonstrates the inherent, and 

underestimated value in collecting key data on 

novel outbreaks, and disseminating it early and 

openly. There is immense potential in using 

methods for automatic text recognition 

combined with improvements to our method and 

integration with alternative methods for cluster 

analysis, to extract as much information as 

possible from these reports. Many new 

infections such as NiV first emerge in resource-

poor regions, making an intensive and/or active 

surveillance system difficult.  With relatively 

little additional development, the method 

presented here could provide a low-cost tool that 

allows for the rapid, objective assessment of 

outbreaks of diseases at the onset of their 

emergence. 
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Table 1: The sensitivity and specificity for every disease pair using the outbreak assessment model. The 

values on the diagonal (shaded cells) give the sensitivity, that is, the proportion of actual positive 

diagnoses that are correctly identified as such. The off-diagonal values (non-shaded cells) give the 

specificity for each disease pair, that is, the proportion of actual negatives that are correctly identified as 

such.  
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Aseptic Meningitis 0·33 1 0·75 1 0.98 0·92 1 1 1 1 

Bacterial Meningitis 1 0·53 1 1 1 0·77 0·67 0·91 1 0·91 

Chandipura encephalitis 1 0·94 0·25 1 1 0·92 1 1 0·55 0·91 

Chikungunya fever 1 1 1 0·86 0·8 1 1 0·91 1 1 

Dengue 0·67 0·88 1 0·14 0·95 0·77 0·94 0·55 1 0·91 

Japanese Encephalitis 0·67 0·47 0·75 0·86 1 0·62 0·61 0·91 1 0·91 

Malaria 1 0·59 1 0·86 1 0·85 0·72 0·91 1 1 

Measles 0·33 0·71 0·75 0·71 0·8 0·77 1 0·55 1 0·82 

Nipah virus encephalitis 1 1 0·75 1 1 1 1 1 1 1 

Typhoid Fever 1 0·82 1 1 0·95 1 1 0·64 1 0·82 
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Table 2: Positive and negative predictive values for every disease pair using the outbreak assessment 

model. Positive predictive values (PPV) on the diagonal (shaded) give the proportion of actual model 

predicted positive diagnoses that are true positives. Negative predictive values (NPV) on the off-diagonals 

(non-shaded) give the proportion of negative model predictions that are true negative diagnoses.  
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Aseptic Meningitis 0·49 1 0·63 1 0.96 0·89 1 1 1 1 

Bacterial Meningitis 1 0·42 1 1 1 0·82 0·74 0·93 1 0·93 

Chandipura encephalitis 1 0·94 0·27 1 1 0·92 1 1 0·51 0·90 

Chikungunya fever 1 1 1 0·75 0·83 1 1 0·92 1 1 

Dengue 0·89 0·96 1 0·72 0·31 0·93 0·98 0·85 1 0·97 

Japanese Encephalitis 0·86 0·78 0·90 0·94 1 0·25 0·84 0·96 1 0·96 

Malaria 1 0·73 1 0·91 1 0·90 0·47 0·94 1 1 

Measles 0·75 0·89 0·91 0·89 0·93 0·91 1 0·21 1 0·93 

Nipah virus encephalitis 1 1 0·8 1 1 1 1 1 0·8 1 

Typhoid Fever 1 0·87 1 1 0·97 1 1 0·74 1 0·58 
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Figure 1: The method to cluster disease reports of similar properties, here demonstrated using a 

network consisting of six outbreak reports of bacterial meningitis and six of Nipah virus 

encephalitis: (A) Each outbreak report is associated with a single network node (circle). (B) Edges (lines) 

between nodes are created if the two reports represented share a symptom or other property. Edges are 

thicker if more symptoms are shared, and the size of a node represents the total number of 

symptoms/properties shared with other nodes.  Edge length, however, is not significant. (C) Each 

symptom and outbreak property is then given a weight, and the edge thickness (or edge weight) is now 

representative of the sum over all the weights of symptoms/properties shared between the two disease 

reports at the end of the edge. The symptom weights are optimized for greatest clustering of reports. The 

size of a node now represents the sum over the weights of all edges connected to it, which can be 

interpreted as the amount of information contained in the report that is relevant for the clustering of 

reports. (D) An algorithm for community detection finds two clusters: edges that connect two nodes 

within the same cluster are black, and ones that connect two nodes in two different clusters grey. Here, 

the algorithm was successful at distinguishing between bacterial meningitis (red) and Nipah virus 

encephalitis (cyan).  Note that in all figures, lengths of edges and positions of nodes have no meaning as 

such, and have been chosen based on an algorithm for optimal visualization (36). 
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Figure 2: Visualization of the network of diagnosed outbreaks of diseases with the potential to cause 

encephalitis (colored) and outbreaks of undiagnosed encephalitis (white). The inner network 

describes the strength and relationship of individual outbreaks to each other, while the outer ring gives the 

composition of the seven communities of disease that are found by the community detection algorithm. 

Outbreaks of the same disease (color) tend to cluster together. The network model acts to minimize the 

number of edges between outbreaks in different communities of disease and maximize the number of 

edges between outbreaks within a single community of disease. Each circle, called a ‘node’, represents a 

single outbreak report. Lines connecting two nodes indicate shared traits between two outbreak reports, in 

symptoms reported, the case fatality ratio or seasonality. Lines connecting two outbreaks within a single 

community are black, and lines between two outbreaks in different communities are in grey. Thicker lines 

represent a greater number of shared traits and thinner lines indicate fewer shared traits. Where nodes 

overlap, they are strongly connected. The size of a node (circle) representing an outbreak is proportional 

to the sum over the thicknesses of all edges connected to it, which can be interpreted as the amount of 

information contained in the outbreak report. Note that in all figures, lengths of edges and positions of 

nodes have no meaning as such, and have been chosen based on an algorithm for optimal visualization 

(36). 
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Figure 3: Zoomed in visualization of diagnosed (colored circles) and undiagnosed outbreaks (white 

circles) in the Nipah cluster (Fig. 2). Outbreaks are given by ID number (Supplemental Tables S1 and 

S3), with outbreaks of Nipah virus encephalitis in cyan and malaria in brown, with undiagnosed outbreaks 

in white, as in Fig. 2. 
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