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Recap

Last session we saw that the posterior 
distribution of 𝜃, given observed data D, is

𝑝 𝜃 𝐷 =
𝑝 𝐷 𝜃 𝑝 𝜃

𝑝 𝐷

Posterior =
Likelihood × Prior

Constant

Our aim is to characterize the posterior.
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Recap
𝑝 𝜃 𝐷 ∝ 𝑝 𝐷 𝜃 𝑝 𝜃 Posterior ∝ Likelihood×Prior

The posterior is a probability distribution that tells us what 
parameter values are credible given the data we have observed 
and our pre-existing (prior) beliefs about the parameters.

This allows us to answer questions like: given some case data 
and a model, plus some (potentially vague) prior beliefs, which 
values of 𝑅! are plausible?
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Data and model

+ Prior beliefs
𝑹𝟎~𝑼(𝟏, 𝟐) Posterior for 𝑹𝟎

à

𝑅! = 𝛽/𝜈



The problem

The posterior, 𝑝 𝜃 𝐷 ∝ 𝑝(𝐷|𝜃)𝑝 𝜃
is not, generally, easy to “solve” for, 
generally because it is complicated, 
intensive to evaluate, and 
multidimensional.

Iqbal et al. (2018) Astrophysics and Space Science 10.1007/s10509-018-3446-3.



The problem

The posterior, 𝑝 𝜃 𝐷 ∝ 𝑝(𝐷|𝜃)𝑝 𝜃 is not, generally, easy to 
“solve” for, generally because it is complicated, intensive to 
evaluate, and multidimensional.

1.70 1.74 1.78

0.
0

0.
4

0.
8

R0

po
st

er
io

r p
ro

ba
bi

lit
y

𝑹𝟎

So how do we characterize 
the posterior, i.e.:
• find the mean, median, 

mode of 𝑹𝟎?
• visualize 𝑹𝟎 in plots?
• give “credible intervals” 

for 𝑹𝟎?
• use fitted 𝑹𝟎 to make 

predictions?



Methods suitable in low dimensions

When the posterior 𝑝 𝜃 𝐷 has relatively few dimensions (i.e. 
𝜃 ∈ ℝ' with 𝑑 = 1 or 2) there are “simpler” methods than 
MCMC that may give equally good results.

We will start by exploring 
two such methods:
• grid approximation 
• rejection sampling
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Method 1: Grid approximation
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mode: “highest” point
plot: draw a line
between points



Method 2: Rejection sampling
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Method 2: Rejection sampling

𝜃

𝑓
𝜃

samples s = {𝜃(, 𝜃), … }

mean: mean(s)
median: median(s)
plot: hist(s)



Practical, part 1
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Start the practical:
“Grid approximation” and “Rejection sampling” 

in the MCMC session
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Practical 1
1. How much do the summary statistics 

change if you perform the sampling again?
2. If you decrease the number of attempts from 

1000 to 100, would you expect the summary 
statistics to change more each time 
sampling is performed or less? What does 
this tell you about reliable sampling?

3. What are the advantages and 
disadvantages of grid approximation versus 
rejection sampling?



Issues with grid / rejection methods

Need to specify the limits of 
the distribution

As dimensions increase: 
Curse of dimensionality
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Curse of dimensionality

Throwing darts at the 
standard normal 
distribution between -4*SD 
and 4*SD:

Fraction 0.31 will “hit”



Curse of dimensionality

2D normal distribution:
0.312 = 0.098

10D normal distribution:
0.3110 = 0.0000091

(to get 1000 samples, 
you need to throw 110 
million darts... and that’s 
when limits are known)



What can we do with posterior samples?

We’ve been focusing on ways of reporting parameter 
estimates...

samples s = {𝜃#, 𝜃$, … }
mean(s) # if s is vector of R0, this gives mean R0

But we can use them to make predictions, test interventions, etc

for theta in s {

run model with R0 = theta and 0% vaccination

run model with R0 = theta and 50% vaccination

record results

}



Markov Chain Monte Carlo

Model Fitting and Inference for
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short course



Markov Chain Monte Carlo 
(MCMC)

Markov chain: stochastic sequence of states in 
which the next state depends only upon the 
current state

𝜃)*+ ~𝔻(𝜃))

Monte Carlo: a famous casino. Also a class of 
algorithms in which random sampling is used to 
solve problems.

Metropolis-Hastings algorithm: a particular way 
of using MCMC to sample from a distribution



MCMC: Outline

• What the algorithm is
• Practical: Implementing Metropolis-

Hastings MCMC
• Why it works.



MCMC algorithm
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Choose a starting point, 𝜃 = 𝜃!

PROPOSE
𝜃" = 𝜃 + 𝜀 | 𝜀 ~ 𝑄

MOVE OR STAY

If 𝑓 𝜃" > 𝑓(𝜃), definitely move.

If 𝑓 𝜃" < 𝑓(𝜃), move with 
probability 𝑓(𝜃")/𝑓(𝜃), 
otherwise stay.

1. PROPOSE
2. MOVE OR STAY (“acceptance”)
3. SAVE LOCATION
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After enough iterations…
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Practical, part 2
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Why does MCMC with 
Metropolis-Hastings converge to 

the target distribution?



A sloppy hill-climbing algorithm
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A thought experiment…

How does the dye “know” to stop flowing?

A
B
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Let’s zoom in on the 
posterior distribution:
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Suppose we have molecules of 
“dye” diffusing through a container 
shaped like the posterior 
distribution

Here the molecules are moving in 
discrete time steps

We will show that if these 
molecules move according to the 
Metropolis acceptance ratio, their 
locations converge to “match” the 
posterior distribution



A B
assume 𝑓 𝐴 > 𝑓(𝐵)

Pr A → B = 𝑞#→% 5
𝑓 𝐵
𝑓 𝐴

Pr B → A = 𝑞%→# 5 1

𝑞#→% = 𝑞%→# = 𝑞

Pr 𝐴 → 𝐵 = 𝑞
𝑓 𝐵
𝑓 𝐴

Pr 𝐵 → 𝐴 = 𝑞

f(B)
f(A)

Net movement from A à B
𝑛# Pr A → B − 𝑛% Pr B → A

= 𝑞(𝑛#
𝑓 𝐵
𝑓 𝐴

− 𝑛%)

there will be flow AàB if:

𝑛#
𝑓 𝐵
𝑓 𝐴

− 𝑛% > 0

𝑛#
𝑛%

>
𝑓 𝐴
𝑓 𝐵

there will be flow BàA if:

𝑛#
𝑓 𝐵
𝑓 𝐴

− 𝑛% < 0

𝑛#
𝑛%

<
𝑓 𝐴
𝑓 𝐵

there will be no net flow A<⁄>B if:

𝑛#
𝑓 𝐵
𝑓 𝐴

− 𝑛% = 0

𝑛#
𝑛%

=
𝑓 𝐴
𝑓 𝐵

nA

nB
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Requirements
Symmetry of proposal distribution

“detailed balance” 𝑞;→< = 𝑞<→;
if 𝑞;→< ≠ 𝑞<→;, use acceptance ratio

𝐴 = min 1,
𝑓 𝜃=

𝑓 𝜃
𝑞>!→>
𝑞>→>!

(Hastings 1970)

Connectedness of distribution
ensures “ergodicity”
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MCMC algorithm
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