Characterising a posterior distribution

Model Fitting and Inference for Infectious Disease Dynamics short course

Recap

Last session we saw that the posterior distribution of θ, given observed data D, is

$$
\begin{gathered}
p(\theta \mid D)=\frac{p(D \mid \theta) p(\theta)}{p(D)} \\
\text { Posterior }=\frac{\text { Likelihood } \times \text { Prior }}{\text { Constant }}
\end{gathered}
$$

Our aim is to characterize the posterior.

Recap

Last session we saw that the posterior distribution of θ, given observed data D, is

$$
p(\theta \mid D) \propto p(D \mid \theta) p(\theta)
$$

Posterior \propto Likelihood \times Prior

Our aim is to characterize the posterior.

Recap

$p(\theta \mid D) \propto p(D \mid \theta) p(\theta) \quad$ Posterior \propto Likelihood \times Prior

The posterior is a probability distribution that tells us what parameter values are credible given the data we have observed and our pre-existing (prior) beliefs about the parameters.

This allows us to answer questions like: given some case data and a model, plus some (potentially vague) prior beliefs, which values of R_{0} are plausible?

Data and model

The problem

Iqbal et al. (2018) Astrophysics and Space Science 10.1007/s10509-018-3446-3.

The problem

The posterior, $p(\theta \mid D) \propto p(D \mid \theta) p(\theta)$ is not, generally, easy to "solve" for, generally because it is complicated, intensive to evaluate, and multidimensional.

So how do we characterize the posterior, i.e.:

- find the mean, median, mode of $\boldsymbol{R}_{\mathbf{0}}$?
- visualize R_{0} in plots?
- give "credible intervals" for $\boldsymbol{R}_{\mathbf{0}}$?
- use fitted $\boldsymbol{R}_{\mathbf{0}}$ to make predictions?

$1.70 \quad 1.74$
1.78
\boldsymbol{R}_{0}

Methods suitable in low dimensions

When the posterior $p(\theta \mid D)$ has relatively few dimensions (i.e.
$\theta \in \mathbb{R}^{d}$ with $d=1$ or 2) there are "simpler" methods than MCMC that may give equally good results.

We will start by exploring two such methods:

- grid approximation
- rejection sampling

Method 1: Grid approximation

Method 1: Grid approximation

Method 2: Rejection sampling

Method 2: Rejection sampling

Practical, part 1

Start the practical:
"Grid approximation" and "Rejection sampling" in the MCMC session

Practical 1

1. How much do the summary statistics change if you perform the sampling again?
2. If you decrease the number of attempts from 1000 to 100 , would you expect the summary statistics to change more each time sampling is performed or less? What does this tell you about reliable sampling?
3. What are the advantages and disadvantages of grid approximation versus rejection sampling?

Issues with grid / rejection methods

Need to specify the limits of the distribution

As dimensions increase:
Curse of dimensionality

Curse of dimensionality

Throwing darts at the standard normal distribution between $-4 *$ SD and $4 *$ SD:

Fraction 0.31 will "hit"

Curse of dimensionality

2D normal distribution:
$0.31^{2}=0.098$
10D normal distribution:
$0.31^{10}=0.0000091$
(to get 1000 samples, you need to throw 110 million darts... and that's when limits are known)

What can we do with posterior samples?

We've been focusing on ways of reporting parameter estimates...
samples $s=\left\{\theta_{1}, \theta_{2}, \ldots\right\}$
mean(s) \# if s is vector of $R 0$, this gives mean $R O$

But we can use them to make predictions, test interventions, etc

```
for theta in s {
    run mode1 with RO = theta and 0% vaccination
    run mode1 with RO = theta and 50% vaccination
    record results
}
```


Markov Chain Monte Carlo

Model Fitting and Inference for Infectious Disease Dynamics short course

Markov Chain Monte Carlo (MCMC)

Markov chain: stochastic sequence of states in which the next state depends only upon the current state

$$
\theta_{t+1} \sim \mathbb{D}\left(\theta_{t}\right)
$$

Monte Carlo: a famous casino. Also a class of algorithms in which random sampling is used to solve problems.

Metropolis-Hastings algorithm: a particular way of using MCMC to sample from a distribution

MCMC: Outline

- What the algorithm is
- Practical: Implementing MetropolisHastings MCMC
- Why it works.

MCMC algorithm

Choose a starting point, $\theta=\theta_{0}$

PROPOSE

$$
\theta^{\prime}=\theta+\varepsilon \mid \varepsilon \sim Q
$$

MOVE OR STAY
If $f\left(\theta^{\prime}\right)>f(\theta)$, definitely move.
If $f\left(\theta^{\prime}\right)<f(\theta)$, move with probability $f\left(\theta^{\prime}\right) / f(\theta)$, otherwise stay.

1. PROPOSE
2. MOVE OR STAY ("acceptance")
3. SAVE LOCATION

MCMC algorithm

1. PROPOSE
2. MOVE OR STAY ("acceptance")
3. SAVE LOCATION

Choose a starting point, $\theta=\theta_{0}$

PROPOSE

$$
\theta^{\prime}=\theta+\varepsilon \mid \varepsilon \sim Q
$$

MOVE OR STAY

$$
\begin{gathered}
\theta \rightarrow\left\{\begin{array}{ccc}
\theta^{\prime} & \operatorname{Pr}(a) & \text { Accept } \\
\theta & \operatorname{Pr}(1-a) & \text { Reject }
\end{array}\right. \\
a=\min \left(1, \frac{f\left(\theta^{\prime}\right)}{f(\theta)}\right) \\
\text { SAVE LOCATION } \\
\theta_{t} \leftarrow \theta
\end{gathered}
$$

SAVE LOCATION

$$
\theta_{t} \leftarrow \theta
$$

MCMC algorithm

1. PROPOSE
2. MOVE OR STAY ("acceptance")
3. SAVE LOCATION

Choose a starting point, $\theta=\theta_{0}$

PROPOSE

$$
\theta^{\prime}=\theta+\varepsilon \mid \varepsilon \sim Q
$$

MOVE OR STAY

$$
\begin{gathered}
\theta \rightarrow\left\{\begin{array}{ccc}
\theta^{\prime} & \operatorname{Pr}(a) & \text { Accept } \\
\theta & \operatorname{Pr}(1-a) & \text { Reject }
\end{array}\right. \\
a=\min \left(1, \frac{f\left(\theta^{\prime}\right)}{f(\theta)}\right) \\
\text { SAVE LOCATION } \\
\theta_{t} \leftarrow \theta
\end{gathered}
$$

After enough iterations...

Practical, part 2

1. PROPOSE
2. MOVE OR STAY ("acceptance")
3. SAVE LOCATION

Choose a starting point, $\theta=\theta_{0}$

PROPOSE

$$
\theta^{\prime}=\theta+\varepsilon \mid \varepsilon \sim Q
$$

MOVE OR STAY

$$
\begin{gathered}
\theta \rightarrow\left\{\begin{array}{ccc}
\theta^{\prime} & \operatorname{Pr}(a) & \text { Accept } \\
\theta & \operatorname{Pr}(1-a) & \text { Reject }
\end{array}\right. \\
a=\min \left(1, \frac{f\left(\theta^{\prime}\right)}{f(\theta)}\right) \\
\text { SAVE LOCATION } \\
\theta_{t} \leftarrow \theta
\end{gathered}
$$

Why does MCMC with Metropolis-Hastings converge to the target distribution?

THE JOURNAL OF CHEMICAL PHYSICS
Equation of State Calculations by Fast Computing Machines
Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, and Augusta H. Teller, Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND
Edward Teller,* Department of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)
A general method, suitable for fast computing machines, for investigating such properties as equations of state for substances consisting of interacting individual molecules is described. The method consists of a modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared to the free volume equation of state and to a four-term virial coefficient expansion.

A sloppy hill-climbing algorithm

A thought experiment...

How does the dye "know" to stop flowing?

Net movement from $A \rightarrow B$

$$
\begin{gathered}
n_{A} \operatorname{Pr}(\mathrm{~A} \rightarrow \mathrm{~B})-n_{B} \operatorname{Pr}(\mathrm{~B} \rightarrow \mathrm{~A}) \\
=q\left(n_{A} \frac{f(B)}{f(A)}-n_{B}\right)
\end{gathered}
$$

there will be flow $A \rightarrow B$ if:

$$
\begin{gathered}
n_{A} \frac{f(B)}{f(A)}-n_{B}>0 \\
\frac{n_{A}}{n_{B}}>\frac{f(A)}{f(B)}
\end{gathered}
$$

there will be flow $B \rightarrow A$ if:

$$
\begin{gathered}
n_{A} \frac{f(B)}{f(A)}-n_{B}<0 \\
\frac{n_{A}}{n_{B}}<\frac{f(A)}{f(B)}
\end{gathered}
$$

there will be no net flow $\mathrm{A} \ll \mathrm{B}$ if:

$$
\begin{gathered}
n_{A} \frac{f(B)}{f(A)}-n_{B}=0 \\
\frac{n_{A}}{n_{B}}=\frac{f(A)}{f(B)}
\end{gathered}
$$

Requirements

Symmetry of proposal distribution
"detailed balance" $q_{A \rightarrow B}=q_{B \rightarrow A}$
if $q_{A \rightarrow B} \neq q_{B \rightarrow A}$, use acceptance ratio

$$
A=\min \left(1, \frac{f\left(\theta^{\prime}\right)}{f(\theta)} \frac{q_{\theta^{\prime} \rightarrow \theta}}{q_{\theta \rightarrow \theta^{\prime}}}\right)
$$

(Hastings 1970)
Connectedness of distribution ensures "ergodicity"

MCMC algorithm

Choose a starting point, $\theta=\theta_{0}$

PROPOSE

$$
\theta^{\prime}=\theta+\varepsilon \mid \varepsilon \sim Q
$$

MOVE OR STAY
If $f\left(\theta^{\prime}\right)>f(\theta)$, definitely move.
If $f\left(\theta^{\prime}\right)<f(\theta)$, move with probability $f\left(\theta^{\prime}\right) / f(\theta)$, otherwise stay.

1. PROPOSE
2. MOVE OR STAY ("acceptance")
3. SAVE LOCATION

MCMC algorithm

1. PROPOSE
2. MOVE OR STAY ("acceptance")
3. SAVE LOCATION

Choose a starting point, $\theta=\theta_{0}$

PROPOSE

$$
\theta^{\prime}=\theta+\varepsilon \mid \varepsilon \sim Q
$$

MOVE OR STAY

$$
\begin{gathered}
\theta \rightarrow\left\{\begin{array}{ccc}
\theta^{\prime} & \operatorname{Pr}(a) & \text { Accept } \\
\theta & \operatorname{Pr}(1-a) & \text { Reject }
\end{array}\right. \\
a=\min \left(1, \frac{f\left(\theta^{\prime}\right)}{f(\theta)}\right) \\
\text { SAVE LOCATION } \\
\theta_{t} \leftarrow \theta
\end{gathered}
$$

