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1. Introduction



Model fitting and inference for infectious disease dynamics

Model
A simplified description, especially a mathematical one,
of a system or process, to assist calculations and pre-
dictions

Oxford English Dictionary

Mathematical model
Takes parameters and produces output
(using some set of rules / equations)



Model fitting and inference for infectious disease dynamics

SIR-type models

γβ
S I R

dS
dt = −βI S

N
dI
dt = βI S

N − γI
dR
dt = γI 010002000300040005000600070008000900010000 0 5 10 15 20 25 30 35 40time SIR Mechanistic models

description vs mechanism



Model fitting and inference for infectious disease dynamics

SIR-type models

γβ
S I R

dS
dt = −βI S

N
dI
dt = βI S

N − γI
dR
dt = γI 010002000300040005000600070008000900010000 0 5 10 15 20 25 30 35 40time SIR

Mechanistic models
description vs mechanism



Model fitting and inference for infectious disease dynamics

Parameter estimation
Given a model, what are the parameter combinations that best
fit the data (in whichever way)

Why are we doing this?
• Learn something about the system

• test a scientific hypothesis
• e.g., why did the UK H1N1 epidemic wane in summer

2009? [1]
• estimate parameters

• e.g. which fraction of infections with cholera in Bangladesh
are asymptomatic? [2]

• sometimes in real time
• Validate the model

• especially: for prediction
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What do we mean by “best fit the data”?
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Model fitting and inference for infectious disease dynamics
State estimation
Given what we observe, what is the state of the sytem?
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right one?
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2. Linking models to data



 







Assessing the “closeness” of model output and data
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Probabilistic formulation

• Often we know something about how the data were taken
→ observations introduce uncertainty

• We can express the uncertainty in observing the process
as a probability

p(data|underlying process)

• By including this in our model, we get

p(data|model output)



Interlude: probabilities I

• If A is a random variable, we write

p(A = a)

for the probability that A takes value a.
• We often write

p(A = a) = p(a)
• Example: The probability that Novak Djokovic wins
Wimbledon

p(W = Djokovic) = p(Djokovic)

• Normalisation ∑
a

p(a) = 1



Interlude: probabilities II

• If A and B are random variables, we write

p(A = a,B = b) = p(a, b)

for the joint probability that A takes value a and B takes
value b

• Example: The probability that Djokovic wins Wimbledon
and it is sunny on the final day

p(W = Djokovic,S = sunny) = p(Djokovic, sunny)

• We can obtain a marginal probability from joint
probabilities by summing

p(a) =
∑

b
p(a, b)



Interlude: probabilities III
• The conditional probability of getting outcome a from
random variable A, given that the outcome of random
variable B was b, is written as

p(A = a|B = b) = p(a|b)

• Example: the probability that Djokovic wins Wimbledon if it
is sunny on the final day

p(W = Djokovic|S = sunny) = p(Djokovic|Sunny)

• Conditional probabilities are related to joint probabilities as

p(a|b) = p(a, b)
p(b)

• We can combine conditional probabilities in the chain rule

p(a, b, c) = p(a|b, c)p(b|c)p(c)



Probability distributions (discrete)
• E.g., how many people die of horse kicks if there are 0.61
kicks per year

• Described by the Poisson distribution
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Evaluating under the (Poisson) probability distribution
• E.g., how many people die of horse kicks if there are 0.61
kicks per year

• Described by the Poisson distribution
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What is the probability of 2
deaths in a year?

dpois(x = 2,
lambda = 0.61)

[1] 0.1010904

Two directions
1. Evaluate the probability
2. Randomly sample



Generating a random sample (Poisson distribution)
• E.g., how many people die of horse kicks if there are 0.61
kicks per year

• Described by the Poisson distribution
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Probability distributions (continuous)

• Extension of probabilities to continuous variables
• E.g., the temperature in London tomorrow
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Evaluating under the (normal) probability distribution
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Evaluate
What is the probability density
of 30◦C tomorrow?

dnorm(x = 30,
mean = 23,
sd = 2)

[1] 0.0004363413

Two directions
1. Evaluate the probability (density)
2. Randomly sample



Generating a random sample (normal distribution)
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[1] 22.99336

Two directions
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2. Randomly sample



Example: observation uncertainty

SIR model, assume that cases are detected with independent
reporting probability ρ = 0.5.
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Example: observation uncertainty

SIR model, assume that cases are detected with independent
reporting probability ρ = 0.5.

At time 10, 18 cases observed, 31.1 cases in the model.
p(data point 10|θ) = 0.078



Example: observation uncertainty
SIR model, assume that cases are detected with independent
reporting probability ρ = 0.5.

Multiply across the data to get the probability of the whole
trajectory.

p(data|θ) =
∏

i
p(data point i|θ)



Example: observation uncertainty
SIR model, assume that cases are detected with independent
reporting probability ρ = 0.5.

Sum across the data to get the probability of the whole
trajectory.

log(p(data|θ)) =
∑

i
log(p(data point i|θ))



 



 



The likelihood

• We compare models to data using probabilities

p(data|model output)

• For a given model this depends on the parameters θ.

L(θ) = p(data|θ)

is called the likelihood of parameters θ.
(note: θ encompasses all parameters; e.g., θ = {β, γ})

• likelihoods can span a wide range of orders of magnitude,
which can lead to numerical problems

Solution: take the logarithm to get the log-likelihood

log L(θ) =
∑

i
log L(θ)



Frequentist vs Bayesian inference

Frequentist inference:
• there are true parameters in the world, the uncertainty
comes from the data

• this is encoded in the likelihood: L(θ) = p(data|θ)
• in inference, one tries to estimate these parameters
• probabilities express outcomes of repeated experiments

Bayesian inference
• there are no true parameters, the data are true; uncertainty
is in parameters / hypotheses

• this is encoded in the posterior: p(θ|data)
• probabilities express my belief in a given parameter
• the posterior is interpreted as the probability distribution of
a random variable θ
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3. Bayesian inference



Bayes’ rule

• We said that in Bayesian inference, we need to calculate
p(θ|data). Applying the rule of conditional probabilities, we
can write this as

p(θ|data) = p(data|θ)p(θ)
p(data)

• p(θ|data) is the posterior
• p(data|θ) is the likelihood
• p(θ) is the prior
• p(data) is a normalisation constant
• In words,

(posterior) ∝ (normalised likelihood) × (prior)



Prior probabilities
• p(θ) quantifies our degree of belief via a probability
distribution before confronting the model with data:

p(θ)
E.g., from previous measurements, literature, experts etc.

• Example: R0 of measles

Hooker et al. 2011

He et al. 2010

Metcalf et al. 2009

Mossong and Muller 2000

Ferrari et al. 2008

Bjornstad et al. 2002

Wallinga et al. 2001

Farrington et al. 2001

Edmunds et al. 2000

Grais et al. 2006

Anderson and May 1990

0 10 20 30 40 50

R0



Example: estimating R₀ of measles



Example: prior for estimating R₀ of measles



Example: posterior for estimating R₀ of measles



Sampling from the posterior

Bayesian statistics
Parameter(s) θ are interpreted as a random variable,
distributed according to the posterior.

p(θ|data) ∝ p(data|θ)p(θ)

We want to generate samples of θ from this distribution.
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4. Practical session in R
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