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1971 influenza epidemic on Tristan da Cunha
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Tristan da Cunha

Two waves, 96% infected, 32% reinfected

Mantle and Tyrrell (1973)
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Broader context

• Influenza usually spreads through the human population in
multiple-wave outbreaks.

• Successive reinfection of individuals over a short time
interval has been explicitly reported during past
pandemics.

2010 Emerg Infect Dis2008 J Infect Dis
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Broader context

• Influenza usually spreads through the human population in
multiple-wave outbreaks.

• Successive reinfection of individuals over a short time
interval has been explicitly reported during past
pandemics.

Problematic
The causes of rapid reinfection and the role of reinfection in
driving multiple-wave outbreaks remain poorly understood.
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Case study
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Objectives

• Disentangling between 5 biological mechanisms that could
explain rapid reinfection of the islanders

• Assess how well the most likely mechanism can reproduce
the data
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Mechanistic modelling of reinfection hypotheses

Primary immune response to influenza
Mut the virus Mutated during the first wave
2Vi 2 Viruses since the beginning of the epidemic
InH Intra-Host reinfection
PPI Partially Protective Immunity

AoN All or Nothing (the SEITL model in the practical)
Win Window of reinfection

Camacho et al. (2011) Proc. Roy. Soc. B
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Mechanistic modelling of reinfection hypotheses
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Likelihood approach

For a given time series: y1:T = (y1, y2, ..., yT ) and a state space
model completely specified by:

M :





p(xt |xt−1, θ) fitmodel$simulate
p(yt |xt , θ) fitmodel$pointLogLike
p(x0|θ) init.state now depends on θ

the likelihood is given by the identity:

p(y1:T |θ) =
T∏

t=1

p(yt |y1:t−1, θ)

How can we find θMLE that maximises the likelihood?
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Iterated Filtering (Ionides et al., 2006)
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Iterated Filtering (Ionides et al., 2006)
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Iterated Filtering (Ionides et al., 2006)
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Iterated Filtering (Ionides et al., 2006)
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Convergence of global estimator

θ̂
(n)

= θ̂
(n−1)

+ V (n)
1

T∑

t=1

θ̂
(n)
t − θ̂

(n)
t−1

V (n)
t

As shown by Ionides et al. (2006), under rather mild
assumptions,

lim
σ→0

T∑

t=1

θ̂t − θ̂t−1

Vt
= ∇ log f (y1:T |θ, σ = 0)

so that, for a sufficiently small σn, the algorithm iteratively
updates θ̂

(n)
in the direction of increasing likelihood, with a

fixed point at a local maximum of the likelihood surface.
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Exploring the likelihood surface
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Exploring the likelihood surface
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Exploring the likelihood surface
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Identifiability issues

Structural 
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Practical 
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Identifiability issues

S E I T L
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β1 ε ν τ
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εντ
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Identifiability issues
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Parameter inference

Model
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Model selection

• We used the corrected Akaike Information Criterion (AICc)
to select the best model

AICc = −2L(θMLE ) + 2k +
2k(k + 1)

T − k − 1
with k = ||θ||

• The best model corresponds to the Windows of reinfection
hypothesis.

• The AoN (SEITL in the practical) model has substantial
support (∆AICc < 2).

• The other models have considerably less support
(∆AICc > 7)
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Autocorrelation of the residuals
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Posterior predictive checks

• Pick one or more summary-statistics of the time-series
• Compute their distances between model and data
• Do it for 10000 replicates of the model under θMLE
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Posterior predictive checks
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Posterior predictive checks

Proportion of points within a radius R from (0,0):

Model R = 0.25 R = 0.5 R = 1 R = 2
Win 0.26 0.5 0.7 0.81
AoN 0.12 0.26 0.43 0.60
2Vi 0.14 0.31 0.42 0.50
Mut 0.06 0.14 0.20 0.24
InH 0.02 0.14 0.40 0.65
PPI 0.01 0.05 0.11 0.18
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Conclusion; fitting stochastic models

• Bayesian (pMCMC) or Frequentist (MIF)?
• Sampling from the posterior vs Exploring the likelihood

surface?
• For both methods, a particle filter is required to evaluate

the likelihood of stochastic models.
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Win + AoN = WoN
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Thanks! Merci! Danke!


	Introduction
	Methods
	Modelling
	Inference

	Results
	Model inference & selection


