Inference

Connecting models to data

The problem with infection data

Often only observe a proportion of reality

- Hospitalised case data gives you those who had severe infection
- Symptom onsets are observed but infection times are not

Or only observe a measure of infection

- antibody response at one time point
- result of imperfect diagnostic test

We use this data to infer the 'truth'.

In a perfect world, we would directly observe the 'truth'.

square=observed, circle=unobserved

- Predicted number of susceptible (S) and infected (I) animals
- Binomial(I, sensitivity).Binomial(S, specificity)

square=observed, circle=unobserved

Serological data

- Antibody process model
- Predicted log antibody titre
- Normally distributed error around predicted log antibody titre
- Laboratory based assay (measure of log antibody titre)

Data

Imperfect reporting of incidence data

- $\theta=R_{0}, D_{\text {lat }}, D_{\text {inf }}, D_{\text {imm }}, \alpha, \rho$
- Deterministic/Stochastic SEITL model
- Predicted incidence Inc
- We assumed data were recorded according to a Poisson process: Poisson $(\rho I n c)$ with reporting rate ρ and predicted incidence Inc
- Reported incidence over time

square=observed, circle=unobserved

Connecting your models to data relies on distinguishing how you predict the 'truth' (model) and how you connect this 'truth' to your data (observation process).

Examples

- Kucharski AJ, Lessler J, Cummings DAT, Riley S (2018) Timescales of influenza A/H3N2 antibody dynamics. PLOS Biology 16(8): e2004974.https://doi.org/10.1371/iournal.pbio.2004974
- Brooks-Pollock E, Roberts G.O, Keeling, M.J (2014) A dynamic model of bovine tuberculosis spread and control in Great Britain. Nature, 511, pp. 228-231

Approximate Bayesian Computation

Outline

1. What is Approximate Bayesian Computation?
2. When do we use $A B C$ instead of other methods?
3. How do we use it?
a) Choices in the ABC-rejection algorithm
b) Short introduction to more advanced $A B C$

1. What is Approximate Bayesian Computation?

Bayesian inference is based on the idea of updating belief with new evidence

- Belief: Prior distribution. Parameters are random variables instead of fixed quantities (they have their own distribution)
- Evidence: Likelihood function tells you the probability of the data given the parameters

Bayesian inference

θ : Mathematical model parameter, D : Data

$$
P(\theta \mid D)=\frac{P(D \mid \theta) P(\theta)}{P(D)}
$$

Bayesian inference

θ : Mathematical model parameter, D : Data

$P(\theta \mid D) \propto P(D \mid \theta) P(\theta)$

Bayesian inference

θ : Mathematical model parameter, D : Data

$P(\theta \mid D) \propto P(D \mid \theta) P(\theta)$

Probability of data given θ (likelihood) EVIDENCE

Bayesian inference

θ : Mathematical model parameter, D : Data

Bayesian inference

θ : Mathematical model parameter, D : Data
Posterior
probability $\longrightarrow P(\theta \mid D) \propto P(D \mid \theta) P(\theta)$ probability

$$
\longrightarrow P(\theta \mid D) \propto P(D \mid \theta) P(\theta)
$$

Bayesian inference

θ : Mathematical model parameter, D : Data

What if we can't use a likelihood function?
(likelihood) EVIDENCE

ABC rejection algorithm

ABC rejection algorithm

1. Sample θ^{*} from the prior distribution $P(\theta)$

ABC rejection algorithm

1. Sample θ^{*} from the prior distribution $P(\theta)$
2. Simulate a dataset D^{*} from your model using θ^{*}

ABC rejection algorithm

1. Sample θ^{*} from the prior distribution $P(\theta)$
2. Simulate a dataset D^{*} from your model using θ^{*}
3. If $d\left(D, D^{*}\right) \leq \epsilon$ accept θ^{*}, otherwise reject

ABC rejection algorithm

1. Sample θ^{*} from the prior distribution $P(\theta)$
2. Simulate a dataset D^{*} from your model using θ^{*}
3. If $d\left(D, D^{*}\right) \leq \epsilon$ accept θ^{*}, otherwise reject
4. Repeat until you have N accepted samples

Prior distribution of model parameter θ
 \times

Simulation n

μ_{n}

Posterior distribution of model parameter θ

ABC rejection algorithm

1. Sample θ^{*} from $P(\theta)$
2. Simulate a dataset D^{*} from your model using θ^{*}
3. Calculate the summary statistic for the observed data $\mu=S(D)$ and simulated data $\mu=S\left(D^{*}\right)$
4. If $d\left(S(D), S\left(D^{*}\right)\right) \leq \boldsymbol{\epsilon}$ accept θ^{*}, otherwise reject
5. Repeat until you have N accepted samples

ABC rejection algorithm

1. Sample θ^{*} from $P(\theta)$
2. Simulate a dataset D^{*} from your model using θ^{*}
3. Calculate the summary statistic for the observed data $\mu=S(D)$ and simulated data $\mu=S\left(D^{*}\right)$
4. If $d\left(S(D), S\left(D^{*}\right)\right) \leq \boldsymbol{\epsilon}$ accept θ^{*}, otherwise reject

> Summary statistic for model trajectory

Distance measure between summary statistic and data
5. Repeat until you have N accepted samples

1. What is Approximate Bayesian Computation?

A method to approximate the posterior distribution $P(\theta \mid D)$ without a likelihood function

$$
P(\theta \mid D) \approx P\left(\theta \mid d\left(S(D), S\left(D^{*}\right)\right) \leq \epsilon\right)
$$

2. When do we use $A B C$ instead of other methods?

2. When do we use $A B C$ instead of other methods?

- Data quality is poor, which means we have to aggregate it
- Model: stochastic model of epidemic across a network of 6 small villages

Data: one village had $>50 \%$ attack rate; 4 villages had $10-50 \%$ attack rate; one village was not affected

- The likelihood function might be costly to evaluate (it takes a long time)
- Large data sets / complicated likelihood function
- We want to reproduce patterns for which it is difficult to express a likelihood
- Model: individual-based viral transmission model with explicit RNA sequence evolution
Pattern: a particular binding motif (AAG CUG GGA U) appears within the virus

3. How do we use $A B C$?
a. Choices in the ABC- rejection algorithm

Choice of summary statistic(s) $\boldsymbol{S}(\boldsymbol{D})$

- This is how we choose whether to accept or reject parameter values
- Sufficient summary statistic will give the same result as the likelihood
- "no other statistic that can be calculated from the same sample provides any additional information as to the value of the parameter"

Choice of summary statistic(s) $\boldsymbol{S}(\boldsymbol{D})$

- This is how we choose whether to accept or reject parameter values
- Sufficient summary statistic will give the same result as the likelihood
- "no other statistic that can be calculated from the same sample provides any additional information as to the value of the parameter"
- If we haven't written down a likelihood then we can't know if our summary statistics are sufficient...

Choice of summary statistic(s) $\boldsymbol{S}(\boldsymbol{D})$

- This is how we choose whether to accept or reject parameter values
- Sufficient summary statistic will give the same result as the likelihood
- "no other statistic that can be calculated from the same sample provides any additional information as to the value of the parameter"
- In practice
- Look at published model fitting studies using ABC methods for ideas for sufficient statistics
- Check with simulated data!

Number of particles (N)

- The more the better, but computation time must be taken into account

Tolerance value $\boldsymbol{\epsilon}$

- Determines whether you accept or reject parameter(s) based on how closely the model prediction matches you data
- Too small and the algorithm will take a long time to run
- Too big and the final distribution of particles will be too wide

Tolerance value $\boldsymbol{\epsilon}$

- Determines whether you accept or reject parameter(s) based on how closely the model prediction matches you data
- Too small and the algorithm will take a long time to run
- Too big and the final distribution of particles will be too wide
- The magnitude of the tolerance value $\boldsymbol{\epsilon}$ will depend on your distance measure

For example, if the summary of the data $S(D)$ is the cumulative number of cases, we could have:

- $S(D)=100000$ (from the data)
- $S\left(D^{*}\right)=99900$ (model prediction)
- If the distance measure $d()$ is the sum of squared difference the, $d\left(S(D), S\left(D^{*}\right)\right)=(100000-9900)^{2}=(100)^{2}=10000$

The prediction was 100 people short of the data, distance measure is 10000 . Hence here a reasonable choice of tolerance might be $\boldsymbol{\epsilon}=$ 10000.
3. How do we use $A B C$? b. Short introduction to more advanced $A B C$

Improvements to $A B C$ rejection algorithm: ABC-Sequential Monte Carlo (ABC-SMC)

- Instead of one tolerance ϵ, there is a vector of tolerances $\epsilon_{1}, \ldots, \epsilon_{T}$

1. We perform ABC rejection with a very large tolerance ϵ_{1} and store our N accepted parameter values as population 1.

Improvements to $A B C$ rejection algorithm: ABC-Sequential Monte Carlo (ABC-SMC)

- Instead of one tolerance ϵ, there is a vector of tolerances $\epsilon_{1}, \ldots, \epsilon_{T}$

1. We perform ABC rejection with a very large tolerance ϵ_{1} and store our N accepted parameter values as population 1.
2. Then we propose parameters by re-sampling parameters from population 1 and perturb the parameters by a small amount. Accept/reject according ϵ_{2}.
3. Add weight to each parameter value according to the prior distribution, how likely you were to obtain that value from perturbation and the previous weights.

Improvements to $A B C$ rejection algorithm: ABC-Sequential Monte Carlo (ABC-SMC)

- Instead of one tolerance ϵ, there is a vector of tolerances $\epsilon_{1}, \ldots, \epsilon_{T}$

1. We perform ABC rejection with a very large tolerance ϵ_{1} and store our N accepted parameter values as population 1.
2. Then we propose parameters by re-sampling parameters from population 1 and perturb the parameters by a small amount. Accept/reject according ϵ_{2}.
3. Add weight to each parameter value according to the prior distribution, how likely you were to obtain that value from perturbation and the previous weights.

- Repeat steps 2-3 T times, sampling from the previous population. Each time decrease the tolerance value.

Practical

In summary: ABC

- Can be used when data quality is poor, likelihood is complex or unknown and is an intuitive model fitting technique
- But you have to specify a suitable summary statistic(s)
- $A B C$ can be slow, there are many extensions: $A B C-S M C, A B C-P M C$ etc.

Reading

General introductions

- McKinley, Trevelyan J.; Vernon, Ian; Andrianakis, Ioannis; McCreesh, Nicky; Oakley, Jeremy E.; Nsubuga, Rebecca N.; Goldstein, Michael; White, Richard G. Approximate Bayesian Computation and Simulation-Based Inference for Complex Stochastic Epidemic Models. Statist. Sci. 33 (2018), no. 1, 4-18. doi:10.1214/17-STS618. https://projecteuclid.org/euclid.ss/1517562021
- Sunnåker M, Busetto AG, Numminen E, Corander J, Foll M, et al. (2013) Approximate Bayesian Computation. PLOS Computational Biology 9(1): e1002803.https://doi.org/10.1371/journal.pcbi. 1002803
- Hartig, F. , Calabrese, J. M., Reineking, B. , Wiegand, T. and Huth, A. (2011), Statistical inference for stochastic simulation models - theory and application. Ecology Letters, 14: 816-827. doi:10.1111/j.1461-0248.2011.01640.x
- Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MPH. (2009). Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. R. Soc. Interface 6 187-202; DOI: 10.1098/rsif.2008.0172.

Reading

Examples of ABC

- Conlan, A.J., McKinley, T.J., Karolemeas, K., Pollock, E.B., Goodchild, A.V., Mitchell, A.P., Birch, C.P., Clifton-Hadley, R.S. and Wood, J.L., (2012). Estimating the hidden burden of bovine tuberculosis in Great Britain. PLoS Computational Biology, 8(10), p.e1002730.
- McKinley, T., Cook, A. R. and Deardon, R. (2009). Inference in epidemic models without likelihoods. Int. J. Biostat. 5.
- Beaumont MA, Zhang W, and Balding DJ. (2002) Approximate Bayesian Computation in Population Genetics. GENETICS. 162 (4) 2025-2035.

